Tìm diện tích nhỏ nhất của các tam giác cân ngoại tiếp đường tròn bán kính r cho trước (tức đường tròn bán kính r nội tiếp tam giác cân).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: \(\frac{{\sqrt {{x^2} + {h^2}} }}{x} = \frac{r}{\rm{\;}} \Rightarrow 1 + \frac{{{h^2}}}{{{x^2}}} = {\left( {\frac{h}{r} - 1} \right)^2}\)
\( \Rightarrow \frac{h}{{{x^2}}} = \frac{h}{{{r^2}}} - \frac{2}{r}\)
\( \Rightarrow {x^2} = \frac{{h{r^2}}}\)
\(S = hx \Rightarrow {S^2} = {(hx)^2} = \frac{{{h^3}{r^2}}}\)
\( \Rightarrow \frac{1}{{{S^2}}} = \frac{{{h^3}{r^2}}} = \frac{1}{{27{r^4}}} \cdot 27 \cdot \frac{r}{h} \cdot \frac{r}{h} \cdot \left( {1 - \frac{h}} \right)\)
\( \Rightarrow \frac{1}{{{S^2}}} \le \frac{1}{{27{r^4}}}{\left( {\frac{r}{h} + \frac{r}{h} + 1 - \frac{h}} \right)^3} = \frac{1}{{27{r^4}}}\)
\( \Rightarrow S'' \ge 3\frac{1}{3}{r^2}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |