Cho tam giác ABC và tam giác A'B'C' có các kích thước như Hình 1. Trên cạnh AB và AC của tam giác ABC lần lượt lấy hai điểm M, N sao cho AM = 2 cm, AN = 3 cm.
a) So sánh các tỉ số \[\frac{{A'B'}},\;\frac{{A'C'}},\;\frac{{B'C'}}\].
b) Tính độ dài đoạn thẳng MN.
c) Em có nhận xét gì về mối quan hệ giữa các tam giác ABC, AMN và A'B'C'.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải:
a) Ta có: \[\frac{{A'B'}} = \frac{2}{6} = \frac{1}{3}\];
\[\frac{{A'C'}} = \frac{3}{9} = \frac{1}{3}\];
\[\frac{{B'C'}} = \frac{4} = \frac{1}{3}\].
Do đó \[\frac{{A'B'}} = \;\frac{{A'C'}} = \;\frac{{B'C'}} = \frac{1}{3}\].
b) Tam giác ABC có \[\frac = \frac = \frac{1}{3}\], theo định lí Thalès đảo suy ra MN // BC.
Khi đó ΔAMN ᔕ ΔABC nên \[\frac = \frac = \frac = \frac{1}{3}\] suy ra MN = 4.
c) Xét tam giác AMN và A'B'C' có:
• MN = B'C' = 4;
• AM = A'B' = 2;
• AN = A'C' = 3.
Suy ra ΔAMN = ΔA′B′C′ (c.c.c).
Nhận xét: ΔAMN = ΔA′B′C′, ΔA′B′C′ ᔕ ΔABC và ΔAMN ᔕ ΔABC.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |