Cho tứ diện đều ABCD cạnh a. Gọi O là tâm đường tròn ngoại tiếp tam giác BCD. Chứng minh hai đường thẳng OA và CD vuông góc với nhau.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Giả sử điểm H là chân đường vuông góc hạ từ đỉnh A xuống mặt phẳng đáy.
Xét ∆AHB, ∆AHC và ∆AHD:
AB=AC=AD=aCanh AH chungAHB^=AHC^=AHD^=90°
Þ ∆AHB, ∆AHC và ∆AHD là các tam giác bằng nhau (cạnh huyền – cạnh góc vuông).
Þ BH = CH = DH Þ H là tâm đường tròn ngoại tiếp tam giác BCD.
Þ H º O Û AO là đường cao của tứ diện ABCD.
Þ OA ^ CD.
Vậy hai đường thẳng OA và CD vuông góc với nhau.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |