Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x – 1)2 + (y – 2)2 = 25.
a) Tìm tâm I và bán kính R của đường tròn (C).
b) Tìm tâm I' và bán kính R' của đường tròn (C') là ảnh của đường tròn (C) qua phép vị tự tâm A(3; 5), tỉ số 2.
c) Viết phương trình của (C').
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải:
a) Ta có (C): (x – 1)2 + (y – 2)2 = 25 hay (x – 1)2 + (y – 2)2 = 52.
Do đó, đường tròn (C) có tâm I(1; 2) và bán kính R = 5.
b) Đường tròn (C') là ảnh của đường tròn (C) qua phép vị tự tâm A(3; 5), tỉ số 2 nên tâm I' của đường tròn (C') là ảnh của tâm I của đường tròn (C) qua phép vị tự V(A, 2) và bán kính R' của đường tròn (C') bằng 2 lần bán kính R của đường tròn (C) hay R' = 2 . 5 = 10.
Ta có: \(\overrightarrow {AI} = \left( {1 - 3;\,2 - 5} \right) = \left( { - 2;\, - 3} \right)\).
Vì I' là ảnh của I qua phép vị tự V(A, 2) nên \(\overrightarrow {AI'} = 2\overrightarrow {AI} \)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_{I'}} - {x_A} = 2.\left( { - 2} \right)\\{y_{I'}} - {y_A} = 2.\left( { - 3} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{I'}} - 3 = - 4\\{y_{I'}} - 5 = - 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{I'}} = - 1\\{y_{I'}} = - 1\end{array} \right.\).
Vậy I'(– 1; – 1) và R' = 10.
c) Phương trình đường tròn (C') là (x + 1)2 + (y + 1)2 = 102 hay (x + 1)2 + (y + 1)2 = 100.Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |