Chứng minh mỗi dãy số sau là cấp số cộng. Xác định công sai của mỗi cấp số cộng đó.
a) 3; 7; 11; 15; 19; 23.
b) Dãy số (un) với un = 9n – 9.
c) Dãy số (vn) với vn = an + b, trong đó a và b là các hằng số.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Dãy số 3; 7; 11; 15; 19; 23 là cấp số cộng với công sai d = 4.
b) Ta có: u1 = 9.1 – 9 = 0.
un+1 = 9(n + 1) – 9 = 9n – 9 + 9 = un + 9, ∀n ∈ ℕ*.
Vậy dãy số (un) là cấp số cộng với số hạng đầu u1 = 0 và công sai d = – 3.
c) Ta có: v1 = a.1 + b = a + b.
vn+1 = a(n + 1) + b = an + a + b = an + b + a = vn + a, ∀n ∈ ℕ*.
Vậy dãy số (vn) là cấp số cộng với số hạng đầu v1 = a + b và công sai là d = a.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |