Cho hình chóp S.ABCD có SA ⊥ (ABCD) và đáy ABCD là hình chữ nhật. Chứng minh rằng các tam giác SBC và SCD là các tam giác vuông.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: SA ⊥ (ABCD), BC ⊂ (ABCD) và DC ⊂ (ABCD).
Suy ra: SA ⊥ BC và SA ⊥ DC.
Vì ABCD là hình chữ nhật nên BC ⊥ AB và DC ⊥ AD.
· Ta có: BC ⊥ SA, BC ⊥ AB và SA ∩ AB = A trong (SAB).
Suy ra BC ⊥ (SAB).
Mà SB ⊂ (SAB) nên BC ⊥ SB hay tam giác SBC vuông tại B.
· Ta có: DC ⊥ AD, DC ⊥ SA và AD ∩ SA = A trong (SAD).
Suy ra DC ⊥ (SAD).
Mà SD ⊂ (SAD) nên DC ⊥ SD hay tam giác SCD vuông tại D.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |