Cho hình chóp đều S.ABCD có các cạnh bên và các cạnh đáy đều bằng a.
a) Chứng minh rằng các tam giác ASC và BSD là tam giác vuông cân.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Do S.ABCD là hình chóp đều nên SA = SB = SC = SD = a.
Vì ABCD là hình vuông nên AC = BC và ABC^=90°.
Áp dụng định lí Pythagore vào tam giác ABC vuông tại B có
AC2 = AB2 + BC2 = a2 + a2 = 2a2.
Mà AC = BD nên BD2 = AC2 = 2a2.
⦁ Xét ∆ASC có: SA2 + SC2 = a2 + a2 = 2a2 = AC2.
Nên theo định lí Pythagore đảo ta có tam giác ASC vuông tại S.
Mà SA = SC nên tam giác ASC vuông cân tại S.
⦁ Xét tam giác BSD có: SB2 + SD2 = a2 + a2 = 2a2 = BD2.
Nên theo định lí Pythagore đảo ta có tam giác BSD vuông tại S.
Mà SB = SD nên tam giác BSD vuông cân tại S.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |