Hai thành phố A, B nằm ở hai bên bờ của một con sông (Hình 13). Giả sử hai bờ sông là hai đường thẳng song song a, b. Tìm vị trí điểm M bên bờ a và N bên bờ b để xây dựng một chiếc cầu MN sao cho MN vuông góc với a, b và tổng khoảng cách AM + NB ngắn nhất.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi d là đường trung trực của đoạn MN.
Suy ra điểm N là ảnh của điểm M qua Đd.
Lấy điểm A’ là ảnh của điểm A qua Đd.
Suy ra đoạn A’N là ảnh của đoạn AM qua Đd.
Do đó A’N = AM.
Lấy điểm B’ là ảnh của điểm B qua Đb.
Suy ra b là đường trung trực của đoạn BB’.
Mà N ∈ b (giả thiết).
Do đó NB’ = NB.
Ta có AM + NB = A’N + NB’.
Áp dụng bất đẳng thức tam giác cho ∆A’NB’, ta được: A’N + NB’ ≥ A’B’.
Do đó tổng khoảng cách AM + NB ngắn nhất khi và chỉ khi A’N + NB’ = A’B’.
Tức là, ba điểm A’, N, B’ thẳng hàng.
Vậy N là giao điểm của A’B’ và bờ b, M là điểm nằm bên bờ a thỏa mãn M = Đd(N), với d là đường trung trực của đoạn MN, A’ = Đd(A), B’ = Đb(B).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |