Bài tập  /  Bài đang cần trả lời

Cho hai tam giác đều ABC và AB’C’ như Hình 9. Gọi M, N lần lượt là trung điểm của BB’ và CC’. Chứng minh ∆AMN đều.

Cho hai tam giác đều ABC và AB’C’ như Hình 9. Gọi M, N lần lượt là trung điểm của BB’ và CC’. Chứng minh ∆AMN đều.

1 Xem trả lời
Hỏi chi tiết
28
0
0
Trần Bảo Ngọc
14/09/2024 01:05:23

Do DABC là tam giác đều nên AB = AC và BAC^=60°.

Do DAB’C’ là tam giác đều nên AB’ = AC’ và B'AC'^=60°.

Ta có phép quay tâm A, góc quay 60° biến:

⦁ Điểm B thành điểm C;

⦁ Điểm B’ thành điểm C’.

Do đó ảnh của đoạn thẳng BB’ qua phép quay tâm A, góc quay 60° là đoạn thẳng CC’.

Mà M, N lần lượt là trung điểm của BB’, CC’ (giả thiết).

Do đó phép quay tâm A, góc quay 60° biến điểm M thành điểm N.

Suy ra AM = AN và MAN^=AM,AN=60°.                

DAMN có AM = AN và MAN^=60° nên là tam giác đều.

Vậy ∆AMN đều.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×