Có thể vẽ mỗi hình sau đây bằng một nét liền, không nhấc bút khỏi giấy, không vẽ lại đoạn đường nào hai lần không? Nếu có, hãy chỉ ra một cách vẽ.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
– Hình 7a:
Gọi tên các đỉnh của đồ thị ở Hình 7a như hình vẽ.
Ta có d(A) = d(B) = d(C) = d(D) = d(E) = d(F) = 2 và d(M) = d(N) = d(P) = d(Q) = d(R) = d(S) = 4.
Suy ra đồ thị ở Hình 7a có tất cả các đỉnh đều có bậc chẵn.
Do đó đồ thị ở Hình 7a có chu trình Euler.
Nói cách khác, ta có thể vẽ Hình 7a bằng một nét liền, không nhấc bút khỏi giấy, không vẽ lại đoạn đường nào hai lần.
Chẳng hạn, ta có cách vẽ như sau: NAMSERQCPNBPQDRSFMN.
– Hình 7b:
Gọi tên các đỉnh của đồ thị ở Hình 7b như hình vẽ.
Ta có:
⦁ d(M) = d(U) = 1;
⦁ d(A) = d(B) = d(C) = d(D) = d(E) = d(F) = d(G) = d(H) = d(I) = d(J) = d(K) = d(L) = 2;
⦁ d(N) = d(P) = d(Q) = d(R) = d(S) = d(T) = 4.
Suy ra đồ thị ở Hình 7b có đúng 2 đỉnh bậc lẻ là M và U.
Do đó đường đi Euler đi từ đỉnh M đến đỉnh U.
Nói cách khác, ta có thể vẽ Hình 7b bằng một nét liền, không nhấc bút khỏi giấy, không vẽ lại đoạn đường nào hai lần.
Chẳng hạn, ta có cách vẽ như sau: MNBCTDANPFGSHEPQJKRLIQRSTU.
– Hình 7c:
Gọi tên các đỉnh của đồ thị ở Hình 7b như hình vẽ.
Ta có:
⦁ d(E) = 1;
⦁ d(A) = d(B) = d(G) = 4;
⦁ d(F) = d(C) = d(D) = 3.
Suy ra đồ thị ở Hình 7c có 4 đỉnh bậc lẻ.
Do đó đồ thị ở Hình 7c không có đường đi Euler và cũng không có chu trình Euler.
Nói cách khác, ta không thể vẽ Hình 7c bằng một nét liền, không nhấc bút khỏi giấy, không vẽ lại đoạn đường nào hai lần.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |