Trong mặt phẳng tọa độ Oxy, cho các điểm A(0; 6), B(6; 3) và điểm M thuộc trục hoành.
a) Xác định điểm C đối xứng với B qua trục hoành.
b) Chứng minh rằng MB = MC.
c) Xác định điểm M sao cho tổng MA + MB đạt giá trị nhỏ nhất.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Điểm B(6; 3) đối xứng với điểm C qua trục hoành Ox nên C là ảnh của B qua phép đối xứng trục Ox. Do đó C(6; – 3).
b) Vì C là ảnh của điểm B qua phép đối xứng trục Ox nên Ox là đường trung trực của đoạn thẳng BC, do đó điểm M thuộc đường trung trực Ox của BC thì M cách đều B và C, suy ra MB = MC.
c)
Vì MB = MC nên MA + MB = MA + MC.
Do A và C nằm khác phía nhau đối với trục Ox và M thuộc Ox nên MA + MC ≥ AC.
Dấu “=” xảy ra khi M thuộc AC.
Như vậy M là giao điểm của AC và Ox thì tổng MA + MB đạt giá trị nhỏ nhất bằng AC.
Ta có: OA=62+02=6, BC=6−62+−3−32=6.
Gọi D là giao điểm của BC và Ox, khi đó CD = 12BC = 3 và OA // CD.
Suy ra OMMD=OACD=63=2. Suy ra OM = 2MD nên OM = 23OD = 23.6 = 4.
Do đó, M(4; 0).
Vậy M(4; 0) thì tổng MA + MB đạt giá trị nhỏ nhất.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |