Cho tam giác OPQ cân tại O có I là trung điểm của PQ. Kẻ IM // QO (M ∈ OP), IN // PO (N ∈ QO). Chứng minh:
Tam giác IMN cân tại I;
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xét ∆OPQ, ta có IP = IQ và IM // QO nên MO = MP.
Xét ∆OPQ, ta có IP = IQ và MO = MP nên IM là đường trung bình của ∆OPQ.
Suy ra IM = \[\frac{1}{2}\]QO.
Tương tự, IN là đường trung bình của ∆OPQ, suy ra IN = \[\frac{1}{2}\]PO.
Mà ∆OPQ cân tại O nên QO = PO. Suy ra IM = IN.
Tam giác IMN có IM = IN suy ra tam giác IMN cân tại I.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |