Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{{x^2} + 7x - 8 \le 0}\\{{a^2}x + 1 > 3 + (3a - 2)x}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x^2} + 7x - 8 \le 0}\\{\left( {{a^2} - 3a + 2} \right)x > 2}\end{array}} \right.\)
Ta đặt \({x^2} + 7x - 8 \le 0\,\,\,\left( a \right)\); \(\left( {{a^2} - 3a + 2} \right)x > 2\,\,\,\left( b \right)\)
Hệ (1) vô nghiệm khi và chỉ khi T(a) ∩ T(b) = ∅
Ta có x2 + 7x – 8 ≤ 0
⇔ (x + 8)(x – 1) ≤ 0
⇔ –8 ≤ x ≤ 1
Suy ra T(a) = [–8; 1]
Đặt a2 – 3a + 2 = m
+) Nếu m = 0 thì a2 – 3a + 2 = 0 \( \Leftrightarrow \left[ \begin{array}{l}a = 1\\a = 2\end{array} \right.\)
Khi đó 0 . x > 2
Suy ra T(b) = ∅
Do đó hệ (1) vô nghiệm
+) Nếu m > 0 thì a2 – 3a + 2 > 0
Suy ra a ∈ (–∞; 1) ∪ (2; +∞)
Khi đó mx > 2
\( \Leftrightarrow x > \frac{2}{m}\)
Ta có:
T(a) ∩ T(b) = ∅
\( \Leftrightarrow \frac{2}{m} \ge 1\)
⇔ 2 ≥ m = a2 – 3a + 2
⇔ a2 – 3a ≤ 0
⇔ 0 ≤ a ≤ 3
Kết hợp điều kiện a ∈ (–∞; 1) ∪ (2; +∞) ta được \(\left[ \begin{array}{l}0 \le a < 1\\2 < a \le 3\end{array} \right.\)
+) Nếu m < 0 thì a2 – 3a + 2 < 0
Suy ra a ∈ (1; 2)
Khi đó mx < 2
\( \Leftrightarrow x < \frac{2}{m}\)
Ta có:
T(a) ∩ T(b) = ∅
\( \Leftrightarrow \frac{2}{m} \le - 8\)
⇔ 2 ≥ –8m = –8(a2 – 3a + 2)
⇔ 4a2 – 12a + 9 ≥ 0
⇔ (2a – 3)2 ≥ 0 (luôn đúng)
Suy ra a ∈ (1; 2) thì hệ (1) vô nghiệm
Vậy 0 ≤ a ≤ 3.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |