LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC còn P, N lần lượt là chân đường vuông góc hạ từ M xuống CA, AB (H.3.45). a) Chứng minh hai tam giác vuông CMP và MBN bằng nhau. b) Chứng minh tứ giác APMN là một hình chữ nhật. Từ đó suy ra N là trung điểm của AB, P là trung điểm của AC. c) Lấy điểm Q sao cho P là trung điểm của MQ, chứng minh tứ giác AMCQ là một hình thoi. d) Nếu AB = AC, tức là tam giác ABC vuông cân tại A thì tứ giác AMCQ có là hình vuông không? Vì sao?

Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC còn P, N lần lượt là chân đường vuông góc hạ từ M xuống CA, AB (H.3.45).

a) Chứng minh hai tam giác vuông CMP và MBN bằng nhau.

b) Chứng minh tứ giác APMN là một hình chữ nhật.

Từ đó suy ra N là trung điểm của AB, P là trung điểm của AC.

c) Lấy điểm Q sao cho P là trung điểm của MQ, chứng minh tứ giác AMCQ là một hình thoi.

d) Nếu AB = AC, tức là tam giác ABC vuông cân tại A thì tứ giác AMCQ có là hình vuông không? Vì sao?

1 trả lời
Hỏi chi tiết
12
0
0

a) Ta có: PM ⊥ AC, AB ⊥ AC ⇒ PM // AB ⇒ CMP^=CBA^ (hai góc đồng vị).

Hai tam giác vuông CMP và MBN có: CM = MB, CMP^=MBN^ (chứng minh trên)

⇒ ∆CMP = ∆MBN (cạnh huyền – góc nhọn).

b) Tứ giác ANMP có ba góc vuông nên là hình chữ nhật.

⇒ PM = AN.

∆CMP = ∆MBN ⇒ PM = BN.

Từ đó, suy ra PM = AN = BN nên N là trung điểm của AB.

Tương tự, ta có CP = MN = AP, tức P là trung điểm của AC.

c) Tứ giác AMCQ có hai đường chéo AC và MQ cắt nhau tại trung điểm mỗi đường nên là hình bình hành, mà QM ⊥ AC nên AMCQ là một hình thoi.

d) Khi AB = AC, tức là tam giác ABC vuông cân tại A thì ACB^=45°.

⇒ QCM^=2ACB^=90° (do AC là một đường chéo của hình thoi AMCQ).

Vậy hình thoi AMCQ có một góc vuông nên là hình vuông.

Vậy khi AB = AC thì tứ giác AMCQ là hình vuông.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 8 mới nhất
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư