Lợi nhuận một xưởng thu được từ việc sản xuất một mặt hàng được cho bởi công thức P(q) = −q3 + 24q2 + 780q – 5000 (nghìn đồng) trong đó q (kg) là khối lượng sản xuất được. Xưởng chỉ sản xuất được tối đa 50 kg sản phẩm trong một tuần.
a) Xưởng sản xuất càng nhiều thì lợi nhuận càng cao.
b) Lợi nhuận lớn nhất khi xưởng sản xuất 26 kg sản phẩm trong một tuần.
c) Sau khi sản xuất được 26 kg sản phẩm, càng sản xuất thêm thì lợi nhuận càng giảm.
d) Lợi nhuận của xưởng thấp nhất khi không sản xuất.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) S | b) Đ | c) Đ | d) S |
Ta có: P(q) = −q3 + 24q2 + 780q – 5000 với 0 ≤ q ≤ 50.
P'(q) = −3q2 + 48q + 780
P'(q) = 0 ⇔ q = 26 hoặc q = −10 (loại do 0 ≤ q ≤ 50).
Ta có bảng biến thiên:
Dựa vào bảng biến thiên, ta thấy:
Xưởng sản xuất càng nhiều thì lợi nhuận càng giảm.
Lợi nhuận lớn nhất khi xưởng sản xuất 26 kg sản phẩm trong một tuần.
Sau khi sản xuất được 26 kg sản phẩm, càng sản xuất thêm thì lợi nhuận càng giảm.
Lợi nhuận sản xuất thấp nhất khi xưởng sản xuất tối đa 50 kg.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |