Người ta muốn thiết kế một lều cắm trại có dạng là một phần mặt cầu bằng phần mềm 3D.
Cho biết phương trình bề mặt của lều là (S): (x – 3)2 + (y – 3)2 + (z – 1)2 = 9, phương trình mặt phẳng chứa cửa lều là (P): x = 2, phương trình chứa sàn lêu là (Q): z = 0. Tìm tâm và bán kính đường tròn cửa lều và đường tròn sàn lều.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bề mặt của lều (S): (x – 3)2 + (y – 3)2 + (z – 1)2 = 9 có tâm I(3; 3; 1), bán kính R = 3.
Gọi d là đường thẳng đi qua I và vuông góc với (P): x = 2.
Ta có vectơ chỉ phương của d là \[{\overrightarrow a _d} = \left( {1;0;0} \right)\].
Suy ra d có phương trình tham số \[\left\{ \begin{array}{l}x = 3 + t\\y = 3\\z = 1\end{array} \right.\].
Gọi A(3 + t; 3; 1) là hình chiếu vuông góc của I trên (P). Thay tọa độ điểm A vào phương trình (P): x = 2, ta được (3 + t) – 2 = 0 hay t = −1, suy ra A(2; 3; 1).
Bán kính r1 của đường tròn có cửa lều là:
r1 = \[\sqrt {{R^2} - I{A^2}} = \sqrt {9 - 1} = 2\sqrt 2 \].
Vậy đường tròn cửa lều có tâm A(2; 3; 1), bán kính r1 = \[2\sqrt 2 \].
Gọi d' là đường thẳng đi qua I và vuông góc với (Q): z = 0.
Ta có vectơ chỉ phương của d' là \[{\overrightarrow u _{d'}}\]= (0; 0; 1)
Suy ra d' có phương trình tham số: \[\left\{ \begin{array}{l}x = 3\\y = 3\\z = 1 + t.\end{array} \right.\]
Gọi B(3; 3; 1 + t) là hình chiếu vuông góc của I trên (Q). Thay tọa độ của điểm B vào phương trình (Q): z = 0 ta được 1 + t = 0, suy ra t = −1, suy ra B(3; 3; 0).
Bán kính r1 của đường tròn sàn lều là: r2 = \[\sqrt {{R^2} - I{B^2}} = \sqrt {9 - 1} = 2\sqrt 2 \].
Vậy đường tròn sàn lều có tâm B(3; 3; 0), bán kính r2 = \[2\sqrt 2 \].
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |