Cho mặt cầu (S) : (x – 1)2 + y2 + (z + 2)2 = 2.
a) Tính khoảng cách từ tâm I của (S) đến mặt phẳng (Oxy).
b) Gọi J là điểm đối xứng của I qua gốc tọa độ O. viết phương trình mặt cầu (S') tâm J và có cùng bán kính với (S).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có mặt cầu (S) có tâm I(1; 0; −2) và bán kính R = \[\sqrt 2 \].
Mặt phẳng (Oxy) có phương trình z = 0.
Ta có: d(I, (Oxy)) = \[\left| { - 2} \right|\] = 2.
b) Ta có: J(−1; 0; 2) là điểm đối xứng của I qua gốc tọa độ O.
Phương trình mặt cầu (S') tâm J, bán kính R = \[\sqrt 2 \] là:
(S'): (x + 1)2 + y2 + (z – 2)2 = 2.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |