A= 4x-x²+1
= -x²+4x+1
=- (x²-4x-1)
= -[(x²-2x.2+4-5)]
= -(x-2)²+5
Vì (x-2)²>=0 với mọi x thuộc |R
=>-(x-2)²<=0
=>-(x-2)²+5<=5
Vậy max A=5 khi x=2
C= 8-x²-5x
= -x²-5x+8
= -(x²+5x-8)
=-[(x²+2x.5/2+25/4-57/4)]
= -[(x+5/2)²-57/4]
= -(x+5/2)²+57/4
Vì (x+5/2)²>=0
-(x+5/2)²<=0
-(x+5/2)²+57/4=<57/4
Vậy MaxC=57/4 khi x= -5/2
E= -10-x²-6x
= -x²-6x-10
= -(x²+6x+10)
=-[(x²+2x.3+9+1)]
=-[(x+3)²+1]
= -(x+3)²-1
Vì -(x+3)²<=0
=>-(x+3)²-1<=-1
Vậy Max E = -1 khi x=-3
G=-7-4x²-8x
=-4x²-8x-7
=-(4x²+8x+7)
= -[(2x)²+2.2x.2+4+3]
= -(2x+2)²-3
=> MaxG=-3 khi x= -1
I=3x-9x²-1
= -9x²+3x-1
=-(9x²-3x+1)
=-[(3x)²-2.3x.1/2+1/4+3/4]
= -(3x-1/2)²-3/4
Vậy Max I= -3/4 khi x=1/6
M=2x-4x²-7
= -(4x²-2x+7)
=-[(2x)²-2.2x.1/2+1/4+27/4]
= -(2x-1/2)²-27/4
Vậy Max M =-27/4 khi x=1/4
B=3-4x-x²
= -(x²+4x-3)
=-[x²+2.x.2+4-7]
=-(x+2)²-7
Vậy Max B=-7 khi x=-2
D=-4-x²+6x
=-[x²-6x+4]
=-[x²-2x.3+9-5]
=-(x-3)²-5
Vậy Max D= -5 khi x=3
F= -x²+13x+1
= -(x²-13x-1)
=-[x²-2x.13/2+169/4-173/4]
= -(x-13/2)²+173/4
Max F= 173/4 khi x=13/2
H=-4x²-12x