LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Tìm x, ta có

Tìm x
----- Nội dung ảnh -----
2x + 2 . 3x + 1 . 5^x = 10800
2 trả lời
Hỏi chi tiết
24
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để tìm \( x \) trong phương trình sau:

\[
2^{x+2} \cdot 3^{x+1} \cdot 5^{x} = 10800
\]

Đầu tiên, chúng ta phân tích \( 10800 \) ra thừa số nguyên tố:

\[
10800 = 108 \times 100 = (2^2 \cdot 3^3) \times (10^2) = (2^2 \cdot 3^3) \times (2 \cdot 5)^2
\]
\[
= 2^2 \cdot 3^3 \cdot 2^2 \cdot 5^2 = 2^{4} \cdot 3^{3} \cdot 5^{2}
\]

Bây giờ ta có:

\[
2^{x+2} \cdot 3^{x+1} \cdot 5^{x} = 2^{4} \cdot 3^{3} \cdot 5^{2}
\]

So sánh các bậc với nhau:

1. Đối với cơ số \( 2 \):
\[
x + 2 = 4 \Rightarrow x = 2
\]

2. Đối với cơ số \( 3 \):
\[
x + 1 = 3 \Rightarrow x = 2
\]

3. Đối với cơ số \( 5 \):
\[
x = 2
\]

Tất cả các phương trình đều cho cùng một giá trị \( x = 2 \).

Vậy, nghiệm của phương trình là:

\[
\boxed{2}
\]
1
0
Nhi
24/09 21:27:53
+5đ tặng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
0
Hải
24/09 21:29:31
+4đ tặng

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư