Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Tìm các đa thức A, B, C

Câu 1 : Tìm các đa thức A, B, C
a) A + 5x² - 2xy = 6x² + 9xy - y²

b) B - ( 6x² - 4xy - y² ) = 7x² - 8xy + 2y²

c) ( 2xy² + 5y² - 1) - C = y² - xy² + 3

Bài 2 : Cho M + (3x² + 3x²y + xy - x² - 1 ) = 3x³ + 3x²y - 3xy² + xy
a) Tìm M
b) Với giá trị nào của x thì M = 17

Câu 3 : Tìm giá trị lớn nhất của biểu thức 
M = (x²y³ + x²y - x² + y² + 5) - ( x²y³ + x³y² + 2y² + 1)

giúp tớ vs ạ, mỗi 1 câu = 1 coin ạ

0 Xem trả lời
Hỏi chi tiết
32
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Chúng ta sẽ cùng giải từng câu một nhé!

### Câu 1:
a) Để tìm đa thức A, ta có phương trình:
\[ A + 5x^2 - 2xy = 6x^2 + 9xy - y^2 \]
=> Bỏ vế phải qua vế trái:
\[ A = (6x^2 + 9xy - y^2) - (5x^2 - 2xy) \]
\[ A = (6x^2 - 5x^2) + (9xy + 2xy) - y^2 \]
\[ A = x^2 + 11xy - y^2 \]

b) Để tìm đa thức B, ta có phương trình:
\[ B - (6x^2 - 4xy - y^2) = 7x^2 - 8xy + 2y^2 \]
=> Bỏ vế phải qua vế trái:
\[ B = (7x^2 - 8xy + 2y^2) + (6x^2 - 4xy - y^2) \]
\[ B = (7x^2 + 6x^2) + (-8xy - 4xy) + (2y^2 - y^2) \]
\[ B = 13x^2 - 12xy + y^2 \]

c) Để tìm đa thức C, ta có phương trình:
\[ (2xy^2 + 5y^2 - 1) - C = y^2 - xy^2 + 3 \]
=> Bỏ vế phải qua vế trái:
\[ C = (2xy^2 + 5y^2 - 1) - (y^2 - xy^2 + 3) \]
\[ C = (2xy^2 - (-xy^2)) + (5y^2 - y^2) - (1 - 3) \]
\[ C = (2xy^2 + xy^2) + (5y^2 - y^2) + 2 \]
\[ C = 3xy^2 + 4y^2 + 2 \]

### Bài 2:
Cho phương trình:
\[ M + (3x^2 + 3x^2y + xy - x^2 - 1) = 3x^3 + 3x^2y - 3xy^2 + xy \]
=> Bỏ vế phải qua vế trái:
\[ M = (3x^3 + 3x^2y - 3xy^2 + xy) - (3x^2 + 3x^2y + xy - x^2 - 1) \]
\[ M = (3x^3) + (3x^2y - 3x^2y) + (xy - xy) - (3x^2 - 3x^2) + 1 \]
\[ M = 3x^3 + 1 \]

a) Vậy M = 3x^3 + 1.

b) Với điều kiện M = 17, ta có:
\[ 3x^3 + 1 = 17 \]
=> Giải phương trình:
\[ 3x^3 = 16 \]
\[ x^3 = \frac{16}{3} \]
=> \( x = \sqrt[3]{\frac{16}{3}} \)

### Câu 3:
Giá trị biểu thức:
\[ M = (x^2y^3 + x^2y - x^2 + y^2 + 5) - (x^2y^3 + x^3y^2 + 2y^2 + 1) \]
Gom nhóm lại:
\[ M = x^2y - x^2 + y^2 + 5 - x^3y^2 - y^2 - 1 \]
=> Đơn giản:
\[ M = x^2y - x^2 - x^3y^2 + 4 \]

Để tìm giá trị lớn nhất của M, có thể sử dụng đạo hàm hoặc thay thế để tìm giá trị lớn nhất trong miền cho phép của x, y. Điều này có thể được thực hiện tùy thuộc vào tính chất và miền của x, y.

Nếu có điều kiện về x và y (ví dụ x, y > 0), bạn có thể dùng các phương pháp tối ưu hóa như đạo hàm để tìm giá trị lớn nhất dựa trên miền cho phép.

Nếu bạn có thêm điều kiện về x và y, vui lòng cung cấp để tôi có thể giúp tính toán chính xác hơn!

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×