Cho a > b > 0, chứng minh rằng
a) a2 > ab và ab > a2;
b) a2 > b2 và a3 > b3.
Chú ý: Tính chất "Với a > b > 0 thì a2 > b2 và a3 > b3" thường hay dùng trong nhiều bài toán chứng minh bất đẳng thức.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Vì a > b > 0 nên:
⦁ a . a > b . a hay a2 > ab.
⦁ a . b > b . b hay ab > b2.
Vậy với a > b > 0 thì a2 > ab và ab > a2.
b) Theo câu a ta có:
a2 > ab > b2, suy ra a2 > b2.
Vì a2 > b2 nên:
⦁ a2 . a > b2 . a hay a3 > ab2.
⦁ b2 . a > b2 . b hay ab2 > b3.
Suy ra a3 > ab2 > b3 hay a3 > b3.
Vậy với a > b > 0 thì a3 > b3.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |