Giải giúp với ạ ----- Nội dung ảnh ----- **BTVN:** 1) \( 2 \cos x + \sqrt{2} = 0 \) 2) \( 2 \sin x + \sqrt{2} = 0 \) 3) \( \cos x - 1 = 0 \) 4) \( \sin 5x + 1 = 0 \) **Bài 2:** 1) Cho \( \sin \alpha = \frac{5}{6} \), tính \( \cos 2\alpha \) 2) Cho \( \sin \alpha = \frac{2}{3} \), \( \cos \alpha = \frac{\sqrt{5}}{3} \) a) Tính \( \sin 2\alpha \) b) Tính \( \sin (\alpha - \frac{\pi}{2}) \) c) Tính \( \cos (\alpha + \frac{\pi}{2}) \)
0 Xem trả lời
52 Tham khảo câu trả lời từ Trợ lý ảo Lazi To solve the equations in your image, let's go through them one by one. ### Bài 1: 1. **\( 2\cos^2 x + \sqrt{2} = 0 \)** - Rearranging gives \( \cos^2 x = -\frac{\sqrt{2}}{2} \) (no solutions). 2. **\( 2\sin x - \sqrt{2} = 0 \)** - This simplifies to \( \sin x = \frac{\sqrt{2}}{2} \). - Solutions: \( x = \frac{\pi}{4} + k\pi \) (where \( k \) is an integer). 3. **\( \cos 5x - 1 = 0 \)** - Thus, \( \cos 5x = 1 \) implies \( 5x = 2k\pi \). - Solutions: \( x = \frac{2k\pi}{5} \). 4. **\( \sin 5x + 1 = 0 \)** - So, \( \sin 5x = -1 \) gives \( 5x = \frac{3\pi}{2} + 2k\pi \). - Solutions: \( x = \frac{3\pi}{10} + \frac{2k\pi}{5} \). ### Bài 2: 1. **Given \( \sin \alpha = \frac{5}{\sqrt{34}} \)**, then \( \cos \alpha = \sqrt{1 - \left(\frac{5}{\sqrt{34}}\right)^2} = \frac{3}{\sqrt{34}} \). 2. **If \( \sin \alpha = \frac{2}{3}, \cos \alpha = \sqrt{1 - \left(\frac{2}{3}\right)^2} = \frac{\sqrt{5}}{3} \)**. #### a) Find \( \sin 2\alpha, \cos 2\alpha \): - \( \sin 2\alpha = 2\sin \alpha \cos \alpha = 2 \cdot \frac{2}{3} \cdot \frac{\sqrt{5}}{3} = \frac{4\sqrt{5}}{9} \). - \( \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = \frac{5}{9} - \frac{4}{9} = \frac{1}{9} \). #### b) Find \( \sin\left(\alpha - \frac{\pi}{2}\right) \): - \( \sin\left(\alpha - \frac{\pi}{2}\right) = -\cos \alpha = -\frac{\sqrt{5}}{3} \). #### c) Find \( \cos\left(\alpha + \frac{\pi}{2}\right) \): - \( \cos\left(\alpha + \frac{\pi}{2}\right) = -\sin \alpha = -\frac{2}{3} \). Feel free to ask if you need specific clarifications on these steps!