\(D=11-(2x^2+3x)^{100}-(\dfrac{x}{y}-2)^{200}(y≠0)\)
Ta có:\(\begin{cases} (2x^2+3x)^{100}≥0∀x\\(\dfrac{x}{y}-2)^{200}≥0∀x,y \end{cases}\)
\(⇒\begin{cases} -(2x^2+3x)^{100}≤0∀x\\-(\dfrac{x}{y}-2)^{200}≤0∀x,y \end{cases}\)
\(⇒11-(2x^2+3x)^{100}-(\dfrac{x}{y}-2)^{200}≤11∀x,y\)
Dấu "=" xảy ra \(⇔\begin{cases} 2x^2+3x=0\\\dfrac{x}{y}-2=0 \end{cases}\)
\(⇒\begin{cases} x(2x+3)=0\\\dfrac{x}{y}=2 \end{cases}\)
\(⇒\begin{cases}\left[\begin{matrix} x=0\\ 2x+3=0\end{matrix}\right. \\2y=x \end{cases}\)
\(⇒\begin{cases}\left[\begin{matrix} x=0\\ x=\dfrac{-3}{2}\end{matrix}\right. \\\left[\begin{matrix} 2y=0\\ 2y=\dfrac{-3}{2}\end{matrix}\right.\end{cases}\)
\(⇒\begin{cases}\left[\begin{matrix} x=0\\ x=\dfrac{-3}{2}\end{matrix}\right. \\\left[\begin{matrix} y=0(ktmđk)\\ y=\dfrac{-3}{4}(tmđk)\end{matrix}\right.\end{cases}\)
Vậy \(x=\dfrac{-3}{2};y=\dfrac{-3}{4}\)