Trong không gian với hệ tọa độ \(Oxyz\), cho hình bình hành \(ABCD\) có ba đỉnh\(A\left( {1;\,3 & ;\, - 1} \right)\), \(B\left( {3;0;\,3} \right)\) và \(C\left( {2;\,3;\,6} \right)\).
a) Tọa độ của vectơ \(\overrightarrow {AB} \) là \(\left( {2;3;4} \right)\).
b) Gọi tọa độ của điểm \(D\) là \(\left( {{x_D};\,{y_D};{z_D}} \right)\), ta có tọa độ của vectơ \(\overrightarrow {CD} \) là:
\(\left( {{x_D} - 2;{y_D} - 3;{z_D} - 6} \right)\).
c) Tọa độ của điểm \(D\) là \(\left( {0;6;2} \right)\).
d) Tọa độ tâm \(O\) của hình bình hành \(ABCD\) là \(\left( {\frac{1}{2};\,0;\,\frac{7}{2}} \right)\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) S, b) Đ, c) Đ, d) S.
Hướng dẫn giải
– Ta có: \(\overrightarrow {AB} = \left( {3 - 1;0 - 3;3 - \left( { - 1} \right)} \right) = \left( {2; - 3;4} \right)\). Do đó, ý a) sai.
– Gọi tọa độ của điểm \(D\) là \(\left( {{x_D};\,{y_D};{z_D}} \right)\), ta có tọa độ của vectơ \(\overrightarrow {CD} \) là:
\(\left( {{x_D} - 2;{y_D} - 3;{z_D} - 6} \right)\).
Do đó, ý b) đúng.
– Ta có \(\overrightarrow {DC} = \left( {2 - {x_D};3 - {y_D};6 - {z_D}} \right)\). Vì \(ABCD\) là hình bình hành nên \(\overrightarrow {DC} = \overrightarrow {AB} \).
Suy ra \(\left\{ \begin{array}{l}2 - {x_D} = 2\\3 - {y_D} = - 3\\6 - {z_D} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 0\\{y_D} = 6\\{z_D} = 2\end{array} \right.\). Vậy \(D\left( {0;6;2} \right)\). Do đó, ý c) đúng.
– Gọi \(O\) là tâm của hình bình hành \(ABCD\). Khi đó, \(O\) là trung điểm của \(AC\).
Suy ra \(\overrightarrow {AO} = \overrightarrow {OC} \).
Gọi tọa độ của \(O\) là \(\left( {x;y;z} \right)\).
Ta có \(\overrightarrow {AO} = \left( {x - 1;y - 3;z + 1} \right)\), \(\overrightarrow {OC} = \left( {2 - x;3 - y;6 - z} \right)\).
Khi đó, \(\overrightarrow {AO} = \overrightarrow {OC} \)\( \Leftrightarrow \left\{ \begin{array}{l}x - 1 = 2 - x\\y - 3 = 3 - y\\z + 1 = 6 - z\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{3}{2}\\y = 3\\x = \frac{5}{2}\end{array} \right.\). Suy ra \(O\left( {\frac{3}{2};3;\frac{5}{2}} \right)\).
Do đó, ý d) sai.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |