Cho hàm số \(y = f\left( x \right) = {x^3} - 3{x^2} - 9x + 5\).
a) Hàm số đã cho đồng biến trên mỗi khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {3; + \infty } \right)\).
b) Giá trị cực đại của hàm số đã cho là \( - 1\).
c) Đồ thị hàm số đã cho đi qua các điểm \(\left( {0;\,5} \right),\,\,\left( {1; - 6} \right),\,\left( { - 1;\, - 10} \right)\).
d) Đường thẳng \(y = - 22\) cắt đồ thị hàm số đã cho tại 3 điểm phân biệt.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Đ, b) S, c) S, d) S.
Hướng dẫn giải
Xét hàm số \(y = f\left( x \right) = {x^3} - 3{x^2} - 9x + 5\).
– Tập xác định của hàm số là \(\mathbb{R}\).
– Ta có \(y' = 3{x^2} - 6x - 9\); \(y' = 0\) khi \(x = - 1\) hoặc \(x = 3\).
Bảng biến thiên của hàm số như sau:
– Hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {3; + \infty } \right)\); nghịch biến trên khoảng \(\left( { - 1;3} \right)\). Do đó, ý a) đúng.
– Hàm số đã cho đạt cực tiểu tại \(x = 3\), \({y_{CT}} = - 22\); đạt cực đại tại . Do đó, ý b) sai.
– Với \(x = 0\) thì \(y = 5\); với \(x = 1\) thì \(y = - 6\); với \(x = - 1\) thì \(y = 10\).
Do đó, đồ thị hàm số đã cho đi qua các điểm \(\left( {0;\,5} \right),\,\,\left( {1; - 6} \right),\,\left( { - 1;\,10} \right)\).
Do đó, ý c) sai.
– Từ bảng biến thiên ta suy ra đường thẳng \(y = - 22\) cắt đồ thị hàm số đã cho tại 2 điểm phân biệt. Do đó, ý d) sai.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |