Cho hàm số \(y = {e^x} - x + 3\).
a) Hàm số đã cho nghịch biến trên \(\mathbb{R}\).
b) Hàm số đã cho đạt cực đại tại \(x = 0\).
c) Đồ thị hàm số cắt trục tung tại điểm có tọa độ là \(\left( {0;4} \right)\).
d) Đồ thị hàm số đã cho không đi qua gốc tọa độ.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) S, b) S, c) Đ, d) Đ.
Hướng dẫn giải
Xét hàm số \(y = {e^x} - x + 3\).
– Tập xác định của hàm số là \(\mathbb{R}\).
– Ta có \(y' = {e^x} - 1\); \(y' = 0\) khi \(x = 0\).
Bảng biến thiên của hàm số như sau:
– Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\). Do đó, ý a) sai.
– Hàm số đã cho đạt cực tiểu tại \(x = 0\) và không có cực đại. Do đó, ý b) sai.
– Với \(x = 0\), ta có \(y = {e^0} - 0 + 3 = 4\) nên đồ thị hàm số cắt trục tung tại điểm \(\left( {0;4} \right)\).
Từ đó suy ra đồ thị hàm số đã cho không đi qua gốc tọa độ.
Vậy ý c) và ý d) đúng.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |