LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

1) Bác Tiến chia số tiền 400 triệu đồng của mình cho hai khoản đầu tư. Sau một năm, tổng số tiền lãi thu được là 27 triệu đồng. Lãi suất cho khoản đầu tư thứ nhất là \(6\% /\)năm và khoản đầu tư thứ hai là \(8\% /\)năm. Tính số tiền bác Tiến đầu tư cho mỗi khoản. 2) Một tổ sản xuất có kế hoạch làm 300 sản phẩm cùng loại trong một số ngày quy định. Thực tế, mỗi ngày tổ đã làm được nhiều hơn 10 sản phẩm so với số sản phẩm dự định làm trong một ngày theo kế hoạch. Vì thế tổ đã hoàn thành công việc ...

1) Bác Tiến chia số tiền 400 triệu đồng của mình cho hai khoản đầu tư. Sau một năm, tổng số tiền lãi thu được là 27 triệu đồng. Lãi suất cho khoản đầu tư thứ nhất là \(6\% /\)năm và khoản đầu tư thứ hai là \(8\% /\)năm. Tính số tiền bác Tiến đầu tư cho mỗi khoản.

2) Một tổ sản xuất có kế hoạch làm 300 sản phẩm cùng loại trong một số ngày quy định. Thực tế, mỗi ngày tổ đã làm được nhiều hơn 10 sản phẩm so với số sản phẩm dự định làm trong một ngày theo kế hoạch. Vì thế tổ đã hoàn thành công việc sớm hơn kế hoạch 1 ngày. Hỏi theo kế hoạch, mỗi ngày tổ sản xuất phải làm bao nhiêu sản phẩm? (Giả định rằng số sản phẩm mà tổ đó làm được trong mỗi ngày là bằng nhau).

3) Biết rằng phương trình bậc hai \({x^2} - 3x + a = 0\) có một nghiệm là \[x = \frac{2}.\] Tìm tổng bình phương hai nghiệm của phương trình trên.

1 trả lời
Hỏi chi tiết
44
0
0
Nguyễn Thu Hiền
11/10 09:56:55

1) Cách 1: Giải bài toán bằng cách lập phương trình

Gọi số tiền ở khoản đầu tư thứ nhất của Bác Tiến là \(x\) (triệu đồng) \(\left( {0 \le x \le 400} \right).\)

Số tiền ở khoản đầu tư thứ hai là: \(400 - x\) (triệu đồng).

Số tiền lãi sau một năm ở khoản đầu tư thứ nhất là: \(6\% x = 0,06x\) (triệu đồng).

Số tiền lãi sau một năm ở khoản đầu tư thứ hai là: \(8\% \left( {400 - x} \right) = 32 - 0,08x\) (triệu đồng).

Theo bài, tổng số tiền lãi bác Tiến nhận được là 27 triệu đồng nên ta có phương trình:

\(0,06x + 32 - 0,08x = 27\).

Giải phương trình:

\(0,06x + 32 - 0,08x = 27\)

\( - 0,02x = 27 - 32\)

\( - 0,02x = - 5\)

\(x = 250\) (thoả mãn điều kiện).

Vậy số tiền ở khoản đầu tư thứ nhất là 250 triệu đồng và ở khoản đầu tư thứ hai là \(400 - 250 = 150\) (triệu đồng).

Cách 2: Giải bài toán bằng cách lập hệ phương trình

Gọi số tiền ở khoản đầu tư thứ nhất và thứ hai của Bác Tiến lần lượt là \(x\) và \(y\) (triệu đồng) \(\left( {0 \le x \le 400,\,\,0 \le y \le 400} \right).\)

Theo bài, tổng số tiền đầu tư của bác Tiến là 400 triệu đồng nên ta có phương trình:

\(x + y = 400\) (1)

Số tiền lãi sau một năm ở khoản đầu tư thứ nhất là: \(6\% x = 0,06x\) (triệu đồng).

Số tiền lãi sau một năm ở khoản đầu tư thứ hai là: \(8\% y = 0,08y\) (triệu đồng).

Theo bài, tổng số tiền lãi bác Tiến nhận được là 27 triệu đồng nên ta có phương trình:

\(0,06x + 0,08y = 27\) (2)

Từ phương trình (1) và (2) ta có hệ phương trình: \[\left\{ \begin{array}{l}x + y = 400\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\0,06x + 0,08y = 27\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\]

Từ phương trình (1) ta có: \(y = 400 - x\) (3)

Thế vào phương trình (2) ta được: \(0,06x + 0,08\left( {400 - x} \right) = 27.\) (4)

Giải phương trình (4):

\(0,06x + 0,08\left( {400 - x} \right) = 27\)

\(0,06x + 32 - 0,08x = 27\)

\( - 0,02x = 27 - 32\)

\( - 0,02x = - 5\)

\(x = 250\) (thoả mãn điều kiện).

Thay giá trị \(x = 250\) vào phương trình (3) ta được: \(y = 400 - 250 = 150\)(thoả mãn điều kiện).

Vậy số tiền ở khoản đầu tư thứ nhất là 250 triệu đồng và ở khoản đầu tư thứ hai là 150 triệu đồng.

2) Giả sử theo kế hoạch mỗi ngày tổ sản xuất phải làm \(x\) (sản phẩm) \(\left( {x \in \mathbb{N}*,{\mkern 1mu} {\mkern 1mu} x < 300} \right).\)

Khi đó, theo kế hoạch thời gian cần thiết để làm xong 300 sản phẩm là: \(\frac{x}\) (ngày).

Thực tế mỗi ngày số sản phẩm mà tổ làm được là: \(x + 10\) (sản phẩm).

Khi đó, thời gian thực tế mà tổ sản xuất làm xong 300 sản phẩm là: \(\frac\) (ngày).

Do tổ đã hoàn thành công việc sớm hơn 1 ngày nên ta có phương trình:

\(\frac{x} - \frac = 1\) (1)

Giải phương trình (1):

\(\frac{x} - \frac = 1\)

\(\frac{1}{x} - \frac{1} = \frac{1}\)

\(\frac{{x\left( {x + 10} \right)}} = \frac{1}\)

\(\frac{{{x^2} + 10x}} = \frac{1}\)

\({x^2} + 10x = 3\,\,000\)

\({x^2} - 50x + 60x - 3\,\,000 = 0\)

\(x\left( {x - 50} \right) + 60\left( {x - 50} \right) = 0\)

\(\left( {x - 50} \right)\left( {x + 60} \right) = 0\)

\(x - 50 = 0\) hoặc \(x + 60 = 0\)

\(x = 50\) (thoả mãn) \(x = - 60\) (không thoả mãn).

Vậy theo kế hoạch mỗi ngày tổ sản xuất cần sản xuất 50 sản phẩm.

3) Để phương trình \({x^2} - 3x + a = 0\) nhận \(x = \frac{2}\) làm một nghiệm thì \(x = \frac{2}\) phải thỏa mãn phương trình đó.

Thay \(x = \frac{2}\) vào phương trình \({x^2} - 3x + a = 0\), ta được:

\({\left( {\frac{2}} \right)^2} - 3 \cdot \left( {\frac{2}} \right) + a = 0\)

\(\frac{4} - \frac{2} + a = 0\)

\(\frac{4} + a = 0\)

\(\frac{{ - 4}}{4} + a = 0\)

\( - 1 + a = 0\)

\(a = 1\).

Với \(a = 1\), phương trình bậc hai trở thành: \({x^2} - 3x + 1 = 0\) (1)

Do phương trình (1) có hai nghiệm nên theo hệ thức Viète ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 3\\{x_1}{x_2} = 1.\end{array} \right.\)

Ta có \(x_1^2 + x_2^2 = x_1^2 + 2{x_1}{x_2} + x_2^2 - 2{x_1}{x_2} = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {3^2} - 2 \cdot 1 = 7.\)

Vậy \(a = 1\) và tổng bình phương hai nghiệm của phương trình đã cho khi ấy bằng 7.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư