Cho tam giác \[ABC\] nhọn \[\left( {AB < AC} \right)\] có đường cao \[AD\] và đường phân giác trong \[AO\] \[\left( {D,O} \right.\] thuộc cạnh \[\left. {BC} \right).\] Kẻ \[OM\] vuông góc với \[AB\] tại \[M,\,\,ON\] vuông góc với \[AC\] tại \[N.\]
1) Chứng minh bốn điểm \[D,M,N,O\] cùng nằm trên một đường tròn.
2) Chứng minh \(OM = ON\) và \[\widehat {BDM} = \widehat {ODN}.\]
3) Qua \[O,\] kẻ đường thẳng vuông góc với \[BC\] cắt \[MN\] tại \[I,\,\,AI\] cắt \[BC\] tại \[K.\] Chứng minh \[K\] là trung điểm của \[BC.\]Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
1) Ta có \[\widehat {AMO} = \widehat {ANO} = 90^\circ \] (giả thiết); \[\widehat {ADO} = 90^\circ \] (giả thiết).
Tam giác \[AMO\] vuông tại \[M\] nên tam giác \[AMO\] nội tiếp đường tròn đường kính \[AO\] có tâm là trung điểm của cạnh huyền \[AO.\]
Tương tự, hai tam giác \[ADO\] và \[ANO\] ngoại tiếp đường tròn đường kính \[AO.\]
Suy ra bốn điểm \[D,M,N,O\] cùng nằm trên đường tròn đường kính \[AO.\]
2) Xét \[\Delta OAM\] và \(\Delta OAN\) có:
\(\widehat {OMA} = \widehat {ONA} = 90^\circ \); cạnh \(OA\) chung;
\(\widehat {OAM} = \widehat {OAN}\) (vì \[AO\] đường phân giác trong của \(\Delta ABC\,)\)
Do đó \[\Delta OAM = \Delta OAN\] (cạnh huyền – góc nhọn).
Suy ra \[OM = ON\] (hai cạnh tương ứng).
Do tứ giác MDON nội tiếp nên \[\widehat {ODN} = \widehat {OMN}\] và \[\widehat {BDM} = \widehat {ONM}\].
Mà \[\widehat {ONM} = \widehat {OMN}\](do tam giác OMN cân tại O). Suy ra \[\widehat {ODN} = \widehat {BDM}\] (đpcm).
* Cách khác:
Chứng minh được hai tam giác OAM và OAN bằng nhau suy ra OM = ON.
Ta có \[\widehat {BDM} + \widehat {ADM} = 90^\circ \], \[\widehat {MAO} + \widehat {AOM} = 90^\circ \].
Mà \[\widehat {ADM} = \widehat {AOM}\] (cùng chắn cung \[AM),\] suy ra \[\widehat {BDM} = \widehat {MAO}\].
Lại có \[\widehat {MAO} = \widehat {OAN}\] (tính chất đường phân giác). Suy ra \[\widehat {BDM} = \widehat {OAN}\].
Hơn nữa \[\widehat {OAN} = \widehat {ODN}\] (cùng chắn cung \[ON),\] suy ra \[\widehat {BDM} = \widehat {ODN}\] (đpcm).
3) Qua \[I,\] kẻ đường thẳng song song với \[BC\] cắt \[AB,\,\,AC\] lần lượt tại \[P,\,\,Q.\]
Ta có: \[\widehat {IOP} = \widehat {IMP} = \widehat {INA}\], \[\widehat {INA} = \widehat {IOQ}\] (vì tứ giác \[OINQ\] nội tiếp).
Suy ra \[\widehat {IOP} = \widehat {IOQ}\]. Mà \[OI \bot PQ\] nên \[OI\] là trung tuyến của tam giác \[OPQ.\]
Ta có \[PQ\,{\rm{//}}\,BC\] nên \[\frac = \frac = \frac\]. Mà \[IP = IQ,\] suy ra \[KB = KC.\]
Vậy \[K\] là trung điểm của \[BC.\]
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |