Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Tìm giá trị của x,y nguyên biết : (x-1).(xy-2)=2

tìm giá trị của x,y nguyên biết :(x-1).(xy-2)= 2
0 Xem trả lời
Hỏi chi tiết
89
Khánh Vũ Nguyễn Long
(x−1)(xy−2)=2 ,
23/10 19:36:57
Khánh Vũ Nguyễn Long
Tìm giá trị của x,y nguyên biết : (x-1).(xy-2)=2
23/10 19:37:16
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để giải phương trình \((x-1)(xy-2)=2\), ta sẽ thực hiện các bước phân tích và tìm giá trị của \(x\) và \(y\).

Bước 1: Chia hai vế của phương trình cho \(x-1\) (giả sử \(x \neq 1\)):

\[
xy - 2 = \frac{2}{x-1}
\]

Bước 2: Từ đó, ta có thể viết lại phương trình thành:

\[
xy = \frac{2}{x-1} + 2
\]

Bước 3: Đưa mọi thứ về phía bên trái:

\[
xy - 2 = \frac{2}{x-1}
\]

Bước 4: Để \(y\) trở thành biến chủ yếu, ta có thể viết lại theo:

\[
y = \frac{\frac{2}{x-1} + 2}{x}
\]

Bước 5: Để tìm các giá trị nguyên, ta xem xét các giá trị nguyên có thể của \(x\) và tính toán \(y\). Chúng ta phải thử một số giá trị nguyên của \(x\) để tìm ra các giá trị tương ứng với \(y\):

- Nếu \(x = 2\):
\[
(2-1)(2y-2) = 2 \implies (1)(2y-2) = 2 \implies 2y - 2 = 2 \implies 2y = 4 \implies y = 2
\]
- Nếu \(x = 3\):
\[
(3-1)(3y-2) = 2 \implies (2)(3y-2) = 2 \implies 3y - 2 = 1 \implies 3y = 3 \implies y = 1
\]
- Nếu \(x = 0\):
\[
(0-1)(0y-2) = 2 \implies (-1)(-2) = 2 \text{ (đúng)}
\]

Vậy đôi giá trị nguyên \((x, y)\) thỏa mãn phương trình là:

\((2, 2)\), \((3, 1)\), và \((0, y)\) với \(y\) là bất kỳ giá trị nguyên nào.

Ngoài ra, xét cẩn thận thì:

- Nếu \(x = 1\), phương trình sẽ không xác định vì ta chia cho \(x - 1 = 0\).

Tóm lại, các nghiệm nguyên của phương trình \((x-1)(xy-2)=2\) có thể bao gồm các cặp như sau:

\[
(2, 2), (3, 1)
\]

Và các giá trị khác sẽ rất là phụ thuộc vào giá trị của \(y\).

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×