Cho \( A = \frac{2}{3^2} + \frac{2}{5^2} + \frac{2}{7^2} + \cdots + \frac{2}{2011^2} \). Chứng minh rằng \( A < \frac{1005}{2012} \) Tham khảo câu trả lời từ Trợ lý ảo Lazi To prove that \[ A = \frac{2}{3^2} + \frac{2}{5^2} + \frac{2}{7^2} + \cdots + \frac{2}{2011^2} < \frac{1005}{2012}, \] we can find an upper bound for the sum \( A \). ### Step 1: Rewrite the sum First, notice that \( A \) is the sum of the inverses of the squares of the odd numbers from 3 to 2011. We can express this as: \[ A = 2 \sum_{k=1}^{1005} \frac{1}{(2k + 1)^2}, \] where \( 2k + 1 \) generates the odd numbers from 3 to 2011. ### Step 2: Understand the series Let’s denote \[ S = \sum_{k=1}^{1005} \frac{1}{(2k + 1)^2}. \] ### Step 3: Find an upper bound for \( S \) We can upper bound \( S \) by comparing it to an integral: \[ S < \int_{1}^{1006} \frac{1}{(2x + 1)^2} \, dx. \] Calculating this integral, we have: \[ \int \frac{1}{(2x + 1)^2} \, dx = -\frac{1}{2(2x + 1)} + C. \] Then, evaluating from 1 to 1006: \[ \int_{1}^{1006} \frac{1}{(2x + 1)^2} \, dx = \left[-\frac{1}{2(2(1006) + 1)} \right] - \left[-\frac{1}{2(2(1) + 1)} \right] \] Calculating the values: - At \( x = 1006 \): \[ -\frac{1}{2(2013)} = -\frac{1}{4026}. \] - At \( x = 1 \): \[ -\frac{1}{2(3)} = -\frac{1}{6}. \] So, \[ \int_{1}^{1006} \frac{1}{(2x + 1)^2} \, dx = -\frac{1}{4026} + \frac{1}{6}. \] ### Step 4: Simplify the calculation Now, calculate \( \frac{1}{6} - \frac{1}{4026} \): \[ \frac{1}{6} = \frac{671}{4026} \quad (\text{since } 6 \times 671 = 4026), \] thus, \[ \frac{671}{4026} - \frac{1}{4026} = \frac{670}{4026} = \frac{335}{2013}. \] ### Step 5: Find \( S \) and conclude Therefore, \[ S < \frac{335}{2013}. \] Thus, we have: \[ A < 2S < 2 \cdot \frac{335}{2013} = \frac{670}{2013}. \] To compare with \( \frac{1005}{2012} \): Calculating \( 670 \times 2012 \) versus \( 1005 \times 2013 \): \[ 670 \times 2012 = 134,5840, \] \[ 1005 \times 2013 = 2,020,065. \] Since \[ 1345840 < 2020065, \] we conclude: \[ \frac{670}{2013} < \frac{1005}{2012}. \] Thus, \[ A < \frac{1005}{2012}, \] proving the inequality is valid. Hence, we have shown that: \[ A < \frac{1005}{2012}. \] Therefore, \[ \boxed{A < \frac{1005}{2012}}. \]