Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy. Gọi \(J\) là trung điểm \(SD\).
Mỗi phát biểu sau đây là đúng hay sai?
Phát biểu | ĐÚNG | SAI |
Thể tích khối chóp \(S.ABCD\) bằng \(\frac{{{a^3}\sqrt 3 }}{6}\). | ¡ | ¡ |
Thể tích khối tứ diện \(ACDJ\) bằng \(\frac{{{a^3}\sqrt 3 }}\). | ¡ | ¡ |
Khoảng cách từ điểm \(D\) đến mặt phẳng \(\left( {ACJ} \right)\) bằng \(\frac{{\sqrt {21} }}\). | ¡ | ¡ |
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Phát biểu | ĐÚNG | SAI |
Thể tích khối chóp \(S.ABCD\) bằng \(\frac{{{a^3}\sqrt 3 }}{6}\). | ¤ | ¡ |
Thể tích khối tứ diện \(ACDJ\) bằng \(\frac{{{a^3}\sqrt 3 }}\). | ¡ | ¤ |
Khoảng cách từ điểm \(D\) đến mặt phẳng \(\left( {ACJ} \right)\) bằng \(\frac{{\sqrt {21} }}\). | ¡ | ¤ |
Giải thích
Gọi \(I\) là trung điểm cạnh \(AB\).
Vì tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy nên \(SI \bot \left( {ABCD} \right)\).
\( \Rightarrow SI = \frac{{a\sqrt 3 }}{2} \Rightarrow {V_{S.ABCD}} = \frac{1}{3}SI.{S_{ABCD}} = \frac{1}{3}.\frac{{a\sqrt 3 }}{2}.{a^2} = \frac{{{a^3}\sqrt 3 }}{6}\)
Ta có: \(\frac{{d\left( {J;\left( {ACD} \right)} \right)}}{{d\left( {S;\left( {ABCD} \right)} \right)}} = \frac{1}{2}\) và \({S_{ACD}} = \frac{1}{2}{S_{ABCD}}\).
\( \Rightarrow {V_{ACDJ}} = \frac{1}{2}.\frac{1}{2}.{V_{S.ABCD}} = \frac{1}{4}{V_{S.ABCD}} = \frac{{{a^3}\sqrt 3 }}\).
Ta có: \(d\left( {D;\left( {ACJ} \right)} \right) = \frac{{3{V_{ACDJ}}}}{{{S_{ACJ}}}}\).
\({\rm{\Delta }}BCI\) vuông tại \(B\) có: \(C{I^2} = C{B^2} + B{I^2} = {a^2} + {\left( {\frac{a}{2}} \right)^2} = \frac{{5{a^2}}}{4}\).
\({\rm{\Delta }}SIC\) vuông tại \(I\) có: \(S{C^2} = S{I^2} + I{C^2} = \frac{{3{a^2}}}{4} + \frac{{5{a^2}}}{4} = 2{a^2}\).
\({\rm{\Delta }}SID\) vuông tại \(I\) có: \(S{D^2} = S{I^2} + I{D^2} = 2{a^2}\).
\({\rm{\Delta }}SCD\) có \(CJ\) là đường trung tuyến nên \(C{J^2} = \frac{{S{C^2} + C{D^2}}}{2} - \frac{{S{D^2}}}{4} = {a^2}\).
\({\rm{\Delta }}SAD\) cân tại \(A\left( {do\,\,SA = AD = a} \right)\) nên \(AJ\) vừa là đường trung tuyến vừa là đường cao.
\( \Rightarrow A{J^2} = A{D^2} - D{J^2} = A{D^2} - {\left( {\frac{2}} \right)^2} = \frac{{{a^2}}}{2}\)
Xét có \({\rm{cos}}A = \frac{{A{J^2} + A{C^2} - C{J^2}}} = \frac{3}{4}\).
\( \Rightarrow {\rm{sin}}\widehat {JAC} = \frac{{\sqrt 7 }}{4} \Rightarrow {S_{AJC}} = \frac{1}{2}AJ.AC.{\rm{sin}}\widehat {JAC} = \frac{{{a^2}\sqrt 7 }}{8}\).
\( \Rightarrow d\left( {D;\left( {ACJ} \right)} \right) = \frac{{a\sqrt {21} }}{7}\).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |