Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
PHÁT BIỂU | ĐÚNG | SAI |
Phương trình \[\left| {f\left( x \right)} \right| = 1\] có 2 nghiệm phân biệt. | ||
Đồ thị hàm số \[y = f\left( x \right)\] có 3 đường tiệm cận đứng. | ||
Số đường tiệm cận của đồ thị hàm số \(g(x) = \frac{2}{{3{\rm{f}}({\rm{x}}) - 2}}\) là 2. |
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đáp án
PHÁT BIỂU | ĐÚNG | SAI |
Phương trình \[\left| {f\left( x \right)} \right| = 1\] có 2 nghiệm phân biệt. | X | |
Đồ thị hàm số \[y = f\left( x \right)\] có 3 đường tiệm cận đứng. | X | |
Số đường tiệm cận của đồ thị hàm số \(g(x) = \frac{2}{{3{\rm{f}}({\rm{x}}) - 2}}\) là 2. | X |
Phương pháp giải
Giải các phương trình và áp dụng định nghĩa đường tiệm cận.
Lời giải
\(|{\rm{f}}({\rm{x}})| = 1 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{\rm{f}}({\rm{x}}) = 1}\\{{\rm{f}}({\rm{x}}) = - 1}\end{array}} \right.\)
\({\rm{f}}({\rm{x}}) = 1\) có 1 nghiệm và \({\rm{f}}({\rm{x}}) = - 1\) có 1 nghiệm.
\( \Rightarrow \) Phương trình \(|{\rm{f}}({\rm{x}})| = 1\) có 2 nghiệm phân biệt.
Ta thấy \(\mathop {\lim }\limits_{{\rm{x}} \to - {2^ - }} {\rm{f}}({\rm{x}}) = - \infty ;\mathop {\lim }\limits_{{\rm{x}} \to {2^ + }} {\rm{f}}({\rm{x}}) = + \infty \)
\( \Rightarrow \) Đồ thị hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) có 2 đường tiệm cận đứng là \({\rm{y}} = - 2;{\rm{y}} = 2\).
Dựa vào đồ thị hàm số ta có:
\(\mathop {\lim }\limits_{{\rm{x}} \to - \infty } {\rm{g}}({\rm{x}}) = \frac{2}{{3.( - 1) - 2}} = - \frac{2}{5}\)
\(\mathop {\lim }\limits_{{\rm{x}} \to + \infty } {\rm{g}}({\rm{x}}) = \frac{2} = 2\)
Suy ra đồ thị hàm số đã cho có 2 đường tiệm cận ngang.
Xét phương trình \(3{\rm{f}}({\rm{x}}) - 2 = 0 \Leftrightarrow {\rm{f}}({\rm{x}}) = \frac{2}{3}\)
Dựa vào đồ thị hàm số ta thấy: phương trình \({\rm{f}}({\rm{x}}) = \frac{2}{3}\) có duy nhất một nghiệm. Vậy hàm số có 3 đường tiệm cận.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |