Bài tập  /  Bài đang cần trả lời

Công thức \(h = - 19,4.\log \frac{P}{}\) là mô hình đơn giản cho phép tính độ cao \(h\) so với mặt nước biển của một vị trí trong không trung (tính bằng kilômét) theo áp suất không khí \(P\) tại điểm đó và áp suất \({P_0}\) của không khí tại mặt nước biển (cùng tính bằng \(Pa - \) đơn vị áp suất, đọc là Pascal). Kéo ô thích hợp thả vào vị trí tương ứng để hoàn thành các câu sau: a) Nếu áp suất không khí ngoài máy bay bằng \(\frac{1}{2}{P_0}\) thì máy bay đang ở độ cao _______ km. (Làm ...

Công thức \(h = - 19,4.\log \frac{P}{}\) là mô hình đơn giản cho phép tính độ cao \(h\) so với mặt nước biển của một vị trí trong không trung (tính bằng kilômét) theo áp suất không khí \(P\) tại điểm đó và áp suất \({P_0}\) của không khí tại mặt nước biển (cùng tính bằng \(Pa - \) đơn vị áp suất, đọc là Pascal).

Kéo ô thích hợp thả vào vị trí tương ứng để hoàn thành các câu sau:

a) Nếu áp suất không khí ngoài máy bay bằng \(\frac{1}{2}{P_0}\) thì máy bay đang ở độ cao _______ km. (Làm tròn đến chữ số thập phân thứ hai)

b) Áp suất không khí tại đỉnh của ngọn núi A bằng \(\frac{4}{5}\) lần áp suất không khí tại đỉnh của ngọn núi B. Ngọn núi cao hơn là ____, ngọn núi thấp hơn là ____. Độ cao chênh lệch giữa hai ngọn núi là

_______km. (Làm tròn đến chữ số thập phân thứ hai)

1 Xem trả lời
Hỏi chi tiết
16
0
0
Tô Hương Liên
24/10 18:14:25

Đáp án

a) Nếu áp suất không khí ngoài máy bay bằng \(\frac{1}{2}{P_0}\) thì máy bay đang ở độ cao 5,84 km. (Làm tròn đến chữ số thập phân thứ hai)

b) Áp suất không khí tại đỉnh của ngọn núi A bằng \(\frac{4}{5}\) lần áp suất không khí tại đỉnh của ngọn núi B. Ngọn núi cao hơn là A, ngọn núi thấp hơn là B. Độ cao chênh lệch giữa hai ngọn núi là 1,88km. (Làm tròn đến chữ số thập phân thứ hai)

Phương pháp giải

Lời giải

a) Độ cao của máy bay khi áp suất không khí ngoài máy bay bằng \(\frac{1}{2}{P_0}\) là:

\(h =  - 19,4.\log \frac{{\frac{1}{2}{P_0}}}{} =  - 19,4.\log \frac{1}{2} \approx 5,84\,\,({\rm{km}}).\)

b) Độ cao của ngọn núi A là: \({h_A} =  - 19,4.\log \frac{}{}\).

Độ cao của ngọn núi B là: \({h_B} =  - 19,4.\log \frac{}{}\).

Áp suất không khí tại đỉnh của ngọn núi \(A\) bằng \(\frac{4}{5}\) lần áp suất không khí tại đỉnh của ngọn núi \(B\) nên ta có:\({P_A} = \frac{4}{5}{P_B} \Leftrightarrow \frac{}{} = \frac{4}{5}{\rm{. }}\)

Ta có:

\(\begin{array}{l}{h_A} - {h_B} = \left( { - 19,4.\log \frac{}{}} \right) - \left( { - 19,4.\log \frac{}{}} \right) =  - 19,4.\log \frac{}{} + 19,4.\log \frac{}{}\\ =  - 19,4\log \left( {\frac{}{}:\frac{}{}} \right) =  - 19,4\log \frac{}{} =  - 19,4\log \frac{4}{5} \approx 1,88\,\,({\rm{km}}).\end{array}\)

Vậy ngọn núi \(A\) cao hơn ngọn núi \(B\) là \(1,88\;{\rm{km}}\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×