Bài tập  /  Bài đang cần trả lời

Cho \(n\) là số tự nhiên thỏa mãn: \(C_n^0 + 2C_n^1 + 4C_n^2 + \ldots + {2^n}C_n^n = 243\). Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau: Giá trị của \(n\) bằng _______. Khi đó hệ số của số hạng chứa \(x\) của khai triển \({(3x - 1)^n}\) là _______. Giá trị của biểu thức \(C_n^0 + C_n^1 + C_n^2 + \ldots + C_n^n\) bằng _______.

Cho \(n\) là số tự nhiên thỏa mãn: \(C_n^0 + 2C_n^1 + 4C_n^2 + \ldots + {2^n}C_n^n = 243\).

Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:

Giá trị của \(n\) bằng _______.

Khi đó hệ số của số hạng chứa \(x\) của khai triển \({(3x - 1)^n}\) là _______.

Giá trị của biểu thức \(C_n^0 + C_n^1 + C_n^2 + \ldots + C_n^n\) bằng _______.

1 Xem trả lời
Hỏi chi tiết
13
0
0
Nguyễn Thu Hiền
24/10 18:16:03

Giá trị của \(n\) bằng 5 .

Khi đó hệ số của số hạng chứa \(x\) của khai triển \({(3x - 1)^n}\) là 15 .

Giá trị của biểu thức \(C_n^0 + C_n^1 + C_n^2 +  \ldots  + C_n^n\) bằng 32 .

Giải thích

Xét khai triển: \({(1 + x)^n} = C_n^0 + xC_n^1 + {x^2}C_n^2 +  \ldots  + {x^n}C_n^n\).

Thay \(x = 2\) ta có: \(C_n^0 + 2C_n^1 + 4C_n^2 +  \ldots  + {2^n}C_n^n = {(1 + 2)^n} = {3^n}\).

Theo đề bài: \({3^n} = 243 \Leftrightarrow n = 5\).

Với \(n = 5\) thì:

+ \({(3x - 1)^n} = {(3x - 1)^5} = \sum\limits_{k = 0}^5 {C_5^k{{(3x)}^{5 - k}}} .{( - 1)^k} = \sum\limits_{k = 0}^5 {C_5^k{3^{5 - k}}.{{( - 1)}^k}.{x^{5 - k}}} \)

Ta có: \(5 - k = 1 \Leftrightarrow k = 4\).

Hệ số của số hạng chứa \(x\) của khai triển là \(C_5^4{.3^{5 - 4}}.{( - 1)^4} = 15\).

+ \(C_n^0 + C_n^1 + C_n^2 +  \ldots  + C_n^n = {(1 + 1)^n} = {2^n} = {2^5} = 32\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×