Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi x, y (m) lần lượt là chiều dài hai cạnh của thửa ruộng hình chữ nhật. Giả sự cạnh giáp sông của thửa ruộng có độ dài là y (m).
Khi đó, theo đề bài ta có: 2x + y = 240 hay y = 240 – 2x.
Do đó: 0 < x < 120; y > 0.
Diện tích cửa thửa ruộng là
S = xy = x(240 – 2x) = 240x – 2x2, 0 < x < 120.
Ta có: S' = 240 – 4x
S' = 0 ⇔ x = 60 (vì 0 < x < 120).
Khi đó y = 240 – 2.60 = 120.
Vậy thửa ruộng có diện tích lớn nhất là:
S = 60. 120 = 7 200 (m2) (khi cạnh giáp sông và cạnh đối diện có độ dài 120 m, hai cạnh kia có độ dài 60 m).
Chú ý: Nếu phải rào cả bốn cạnh cửa thửa ruộng thì dễ thấy thửa ruộng có diện tích lớn nhất khi nó là hình vuông, tức là bốn cạnh đều dài 60 m, và khi đó diện tích lớn nhất là
3 600 m2.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |