https://www.gauthmath.com/search-question?search=Limx- căn2x+3 / 9-x^2&action=search&questionID=1816245542288504
0 trả lời
7 Tham khảo câu trả lời từ Trợ lý ảo Lazi To evaluate the limit \[ \lim_{x \to 3} \frac{x - \sqrt{2x + 3}}{9 - x^2}, \] let's begin by substituting \(x = 3\) directly into the expression. First, the numerator: \[ 3 - \sqrt{2(3) + 3} = 3 - \sqrt{6 + 3} = 3 - \sqrt{9} = 3 - 3 = 0. \] Now for the denominator: \[ 9 - 3^2 = 9 - 9 = 0. \] Since substituting \(x = 3\) gives both the numerator and denominator equal to zero, we can apply L'Hôpital's Rule, which is useful when we have a \(\frac{0}{0}\) form. L'Hôpital's Rule states that if \( \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0} \) or \(\frac{\pm \infty}{\pm \infty}\), then \[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}, \] assuming the limit on the right exists. Let's differentiate the numerator and the denominator. 1. **Numerator:** \[ f(x) = x - \sqrt{2x + 3}. \] Using the chain rule: \[ f'(x) = 1 - \frac{1}{2\sqrt{2x + 3}} \cdot 2 = 1 - \frac{1}{\sqrt{2x + 3}}. \] 2. **Denominator:** \[ g(x) = 9 - x^2. \] Differentiating gives: \[ g'(x) = -2x. \] Applying L'Hôpital's Rule: \[ \lim_{x \to 3} \frac{f'(x)}{g'(x)} = \lim_{x \to 3} \frac{1 - \frac{1}{\sqrt{2x + 3}}}{-2x}. \] Now we can substitute \(x = 3\) into the derivatives we derived: For the numerator: \[ f'(3) = 1 - \frac{1}{\sqrt{2(3) + 3}} = 1 - \frac{1}{\sqrt{9}} = 1 - \frac{1}{3} = \frac{2}{3}. \] For the denominator: \[ g'(3) = -2(3) = -6. \] So we have: \[ \lim_{x \to 3} \frac{f'(x)}{g'(x)} = \frac{\frac{2}{3}}{-6} = \frac{2}{3} \cdot -\frac{1}{6} = -\frac{2}{18} = -\frac{1}{9}. \] Therefore, the final answer is: \[ \lim_{x \to 3} \frac{x - \sqrt{2x + 3}}{9 - x^2} = -\frac{1}{9}. \]