Bài tập  /  Bài đang cần trả lời

29/11/2024 19:28:32

Cho tam giác abc nhọn có AB= AC, vẽ BD vuông góc với AC tại D, CE vuông góc với AB tại E. gọi M là giao điểm của BD và CE. Chứng minh tam giác DBA= tam giác EAC

cho tam giác abc nhọn có AB= AC, vẽ BD vuông góc  với AC tại D, CE vuông góc với AB tại E. gọi M là giao điểm của BD và CE. chứng minh
 ​a) tam giác DBA= tam giác EAC
b) tam giác EBC= tam giác DCB
c) tam giác EAM= tam giác DAM
2 Xem trả lời
Hỏi chi tiết
148
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để chứng minh các cặp tam giác bằng nhau trong đề bài, ta sẽ sử dụng lý thuyết về tam giác đồng dạng và các hệ thức liên quan đến góc và cạnh.

### a) Chứng minh tam giác DBA = tam giác EAC

1. **Góc:**
- Đầu tiên, ta có AB = AC (điều kiện đề bài).
- Từ đó, sẽ có góc DBA = góc EAC (bởi vì DA // EC - vuông góc).

2. **Cạnh:**
- Ta có DB = EC vì cả DB và EC đều là đường vuông góc từ điểm B xuống AC và từ điểm C xuống AB.

3. **Góc tại đỉnh:**
- Góc ADB = góc AEC = 90 độ (do BD và CE vuông góc với AC và AB).

Kết hợp tất cả các yếu tố trên, ta có:

- DBA = EAC (góc-góc-cạnh)

Do đó, ta có \( \triangle DBA \cong \triangle EAC \).

### b) Chứng minh tam giác EBC = tam giác DCB

1. **Góc:**
- Góc EBC = góc DCB (góc chung với CB).

2. **Cạnh:**
- Ta nhận thấy AB = AC (theo giả thiết) và BD // CE (từ chứng minh a).

3. **Cạnh chung:**
- Cạnh BC là cạnh chung của hai tam giác.

Từ đó, ta có các cặp góc và cạnh tương ứng và nhờ đó:

- EBC = DCB (góc-góc-cạnh) nên \( \triangle EBC \cong \triangle DCB \).

### c) Chứng minh tam giác EAM = tam giác DAM

1. **Góc:**
- Ta thấy rằng góc EAM = góc DAM (Cả hai góc này đều có chung điểm A và trên cùng đường thẳng AM).

2. **Cạnh:**
- EM = DM (vì M là giao điểm của BI và CE, các đoạn EM và DM có độ dài bằng nhau tính từ điểm A, từ tính chất đường vuông góc với hai tiếp tuyến AB và AC).

3. **Góc tại A:**
- Hai góc EAD và DAE cũng là góc vuông (đều vuông góc với cạnh AB hoặc AC).

Từ đó, chúng ta có thể kết luận:

- EAM = DAM (góc-góc-cạnh).

Như vậy, ta có \( \triangle EAM \cong \triangle DAM \).

### Kết luận

Đã chứng minh xong các cặp tam giác:

- \( \triangle DBA \cong \triangle EAC \)
- \( \triangle EBC \cong \triangle DCB \)
- \( \triangle EAM \cong \triangle DAM \)

Như vậy, tính chất tam giác được khẳng định là đúng theo các yêu cầu đã đề ra.
1
1
Chou
29/11/2024 19:30:10
+5đ tặng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
0
0
kí đầu màu giờ
29/11/2024 20:04:29
+4đ tặng
 △ABC nhọn có :
AB = AC(gt)
=>  △ABC cân tại A
=> ^ABC = ^ACB
a) Xét△BAD và △CAE có :
AB = AC(gt)
^CEA = ^BDA ( 2 góc vuông)
^A chung 
=> △BAD = △CAE ( g-c-g)
b) Vì △BAD = △CAE
=> EC = BD 
Xét △ECB và △DCB có :
EC = BD ( cmt)
^EBC = ^DCB ( cmt)
BC chung
=> △ECB = △DCB(c-g-c)
c) Ta có : EC ⊥ AB
               BD⊥ AC
mà 2 điểm này cắt nhau tại M
=> M là trực tâm của △ABC
=> Tia AM ⊥ BC
=> ^BAM = ^CAM ( Vì △ABC cân tại A)
Xét △EAM và △DAM có :
^BAM = ^CAM(cmt)
AM chung 
^AEM = ^ADM ( 2 góc vuông)
=>  △EAM = △DAM(g-c-g)

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×