Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC có ba góc nhọn kẻ đường cao BD và CE

Cho tam giác ABC có ba góc nhọn kẻ đường cao BD và CE

a) Chứng minh 4 điểm A,E,H,D cùng thuộc 1 đường tròn biết H là trực tâm của tam giác ABC

b)Chứng minh 4 điểm B,E,D,C cùng thuộc 1 đường tròn

c)So sánh BC và DE

    1 Xem trả lời
    Hỏi chi tiết
    34
    Tham khảo câu trả lời từ Trợ lý ảo Lazi
    Để giải quyết bài toán, ta sẽ từng bước chứng minh các mệnh đề của bài.

    ### a) Chứng minh 4 điểm A, E, H, D cùng thuộc 1 đường tròn

    Gọi H là trực tâm của tam giác ABC. Theo định nghĩa, H là giao điểm của ba đường cao của tam giác ABC.

    Ta sẽ chứng minh rằng tứ giác AEHD nội tiếp. Tứ giác AEHD sẽ nội tiếp nếu góc AHE + góc ADE = 180 độ.

    - **Xét góc AHE**: Là góc giữa đường cao CE và đường cao BD, tức là góc C.
    - **Xét góc ADE**: Là góc giữa đường cao BD và cạnh AC, tức là góc A.

    Ta có:
    \[ \angle AHE + \angle ADE = \angle C + \angle A = \angle A + \angle B + \angle C - \angle B = 180^\circ \]

    Vậy tứ giác AEHD nội tiếp một đường tròn.

    ### b) Chứng minh 4 điểm B, E, D, C cùng thuộc 1 đường tròn

    Ta cần chứng minh rằng tứ giác BEDC nội tiếp. Tứ giác BEDC sẽ nội tiếp nếu góc BEC + góc BDC = 180 độ.

    - **Xét góc BEC**: Là góc giữa đường cao CE và cạnh AB, tức là góc A.
    - **Xét góc BDC**: Là góc giữa đường cao BD và cạnh AC, tức là góc C.

    Ta có:
    \[ \angle BEC + \angle BDC = \angle A + \angle C = 180^\circ - \angle B \]

    Vậy tứ giác BEDC cũng nội tiếp một đường tròn.

    ### c) So sánh BC và DE

    Để so sánh độ dài BC và DE, ta sử dụng tính chất của tam giác nhọn.

    Trong tam giác ABC nhọn, hai đường cao BD và CE sẽ tạo thành các cạnh DE (cạnh đáy trong tam giác ADE) và BC (cạnh đáy trong tam giác BEC).

    Dễ thấy rằng, theo định lý đường cao trong tam giác (cũng như tính chất về tỉ lệ các đoạn thẳng), ta có:
    \[ DE < BC \]

    Bởi vì DE nằm giữa hai đường cao CE và BD, còn BC là cạnh đối diện trong tam giác được tạo thành từ các đường cao.

    ### Kết luận

    - **a)** 4 điểm A, E, H, D cùng thuộc 1 đường tròn.
    - **b)** 4 điểm B, E, D, C cùng thuộc 1 đường tròn.
    - **c)** BC > DE.

    Hy vọng phần giải thích trên giúp bạn hiểu rõ về bài toán và các yêu cầu của nó!
    0
    0
    off thi cuối kì sẽ ...
    01/12/2024 14:37:48
    +5đ tặng

    a: Ta có: ΔBEC vuông tại E

    =>ΔBEC nội tiếp đường tròn đường kính BC(1)

    Ta có: ΔBDC vuông tại D

    =>ΔBDC nội tiếp đường tròn đường kính BC(2)

    Từ (1) và (2) suy ra B,E,D,C cùng nằm trên đường tròn đường kính BC

    Tâm O là trung điểm của BC

    b: Xét ΔABC có 

    BD,CE là các đường cao

    BD cắt CE tại H

    Do đó: H là trực tâm của ΔABC

    =>AH⊥⊥BC tại M

    Ta có: AH⊥⊥BC

    EK⊥⊥BC

    Do đó: AH//EK

    c: Ta có: ΔAHD vuông tại D

    mà DI là đường trung tuyến

    nên ID=IH

    =>ΔIDH cân tại I

    =>IHD^=IDH^IHD=IDH

    mà IHD^=BHM^IHD=BHM(hai góc đối đỉnh)

    và BHM^=BCD^(=900−DBC^)BHM=BCD(=900−DBC)

    nên IDH^=BCD^IDH=BCD

    Ta có: OD=OB

    =>ΔODB cân tại O

    =>ODB^=OBD^=CBD^ODB=OBD=CBD

    Ta có: IDO^=IDH^+ODB^IDO=IDH+ODB

    =DBC^+DCB^=DBC+DCB

    =90 độ

    =>ID là tiếp tuyến của (O)

    Mở khóa để xem toàn bộ nội dung trả lời

    (?)
    Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
    Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
    Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
    Tôi đã có tài khoản? Đăng nhập

    Bạn hỏi - Lazi trả lời

    Bạn muốn biết điều gì?

    GỬI CÂU HỎI
    Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

    Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

    Vui Buồn Bình thường
    ×
    Trợ lý ảo Trợ lý ảo
    ×
    Đấu trường tri thức | Lazi Quiz Challenge +500k
    Gửi câu hỏi
    ×