Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi x, y lần lượt là số ngày để đổi I và đội II hoàn thành công việc nếu làm riêng một mình (x, y > 0).
Mỗi ngày đội I làm được \(\frac{1}{x}\) (công việc) và đội II làm được \(\frac{1}{y}\) (công việc).
Mỗi ngày đội I làm được nhiều gấp rưỡi đội II nên ta có phương trình \(\frac{1}{x}\) = 1,5.\(\frac{1}{y}\) hay
\(\frac{1}{x}\) = \(\frac{3}{2}.\frac{1}{y}\) (1).
Hai đội làm chung trong 24 ngày thì xong công việc nên mỗi ngày, hai đội làm chung được \(\frac{1}\) (công việc). Ta có phương trình: \(\frac{1}{x} + \frac{1}{y} = \frac{1}\) (2).
Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}\frac{1}{x} = \frac{3}{2}.\frac{1}{y}\\\frac{1}{x} + \frac{1}{y} = \frac{1}\end{array} \right.\)
Đặt u = \(\frac{1}{x}\) và v = \(\frac{1}{y}\) thì ta có hệ phương trình bậc nhất hai ẩn mới là u và v như sau:
\(\left\{ \begin{array}{l}u = \frac{3}{2}v\\u + v = \frac{1}\end{array} \right.\)
Thế u = \(\frac{3}{2}\)v vào phương trình u + v = \(\frac{1}\) được \(\frac{3}{2}\)v + v = \(\frac{1}\) hay \(\frac{5}{2}\)v = \(\frac{1}\) suy ra
v = \(\frac{1}\).
Do đó, u = \(\frac{3}{2}\)v = \(\frac{3}{2}\).\(\frac{1}\) = \(\frac{1}\).
Từ đó, ta có: u = \(\frac{1}{x}\) = \(\frac{1}\) suy ra u = 40; v = \(\frac{1}{y}\) = \(\frac{1}\) suy ra y = 60.
Các giá trị tìm được của x và y đều thỏa mãn điều kiện.
Vậy nếu làm một mình thì đội I làm xong đoạn đường đó trong 40 ngày, còn đội II làm xong trong 60 ngày.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |