Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho AABC vuông tại A (AB < AC) và trung tuyến AM. Gọi H là trung điểm của AB. Trên tia đối của tia HM lấy điểm N sao cho HN = ΗΜ

0 Xem trả lời
Hỏi chi tiết
26
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để giải bài toán hình học này, ta sẽ thực hiện từng bước như sau:

1. **Chứng minh AM = MB và tam giác ANBM là hình thoi:**
- H là trung điểm của AB, do đó \( AH = HB \).
- AM là trung tuyến, nên \( AM = MB \) (chứng minh bằng cách sử dụng định nghĩa trung tuyến).
- Trong tam giác vuông tại A, ta có AN = NM (HN = HM), từ đó suy ra ANBM là hình thoi khi AN = BM.

2. **Xét đường thẳng vuông góc với BN cắt BA tại D:**
- Vì H là trung điểm của AB, khi kẻ đường thẳng BN và dựng đường vuông góc tại B, ta có \( D \) trên BA.
- Theo tính chất của các đường vuông góc, dùng định nghĩa và tính chất của điểm D, ta chứng minh được DM vuông góc với BC.

3. **Gọi K là giao điểm của DM và AC:**
- Kéo dài MA cắt DN tại I. Theo tính chất giao điểm và tính chất đường thẳng, \( P \) thuộc MA.
- Gọi L là trung điểm của HP;cắt EJ tại MI. Chứng minh rằng E là trung điểm của NJ và JK đều song song với MI.

Kết luận về các điểm và đoạn thẳng đã được chứng minh ở trên. Bằng các định lý trong hình học (như tính chất của góc vuông, trung điểm, vv), ta có thể chứng minh được yêu cầu của bài toán.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×