Tham khảo câu trả lời từ Trợ lý ảo Lazi To solve the optimization problems you've provided, we can break them down step by step: ### 1. Problem a) Minimize \( F(x, y) = 2x - 3y \) under the constraints: - \( x \geq 0 \) - \( y \geq 0 \) - \( 4x + 2y \leq 8 \) **Constraints Interpretation:** 1. \( x \geq 0 \) 2. \( y \geq 0 \) 3. From \( 4x + 2y \leq 8 \), we can simplify it to \( 2x + y \leq 4 \). **Vertices of the feasible region:** - Intercepts of the line \( 2x + y = 4 \): - \( x \)-intercept: \( (2, 0) \) - \( y \)-intercept: \( (0, 4) \) The vertices of the feasible region are: - \( (0, 0) \) - \( (2, 0) \) - \( (0, 4) \) **Evaluating the objective function at the vertices:** - \( F(0, 0) = 2(0) - 3(0) = 0 \) - \( F(2, 0) = 2(2) - 3(0) = 4 \) - \( F(0, 4) = 2(0) - 3(4) = -12 \) **Minimum value:** \( F(0, 4) = -12 \) --- ### 2. Problem b) Minimize \( F(x, y) = x + 5y \) under the constraints: - \( x \geq 0 \) - \( y \geq 0 \) - \( 3x + y \leq 12 \) **Constraints Interpretation:** 1. \( x \geq 0 \) 2. \( y \geq 0 \) 3. From \( 3x + y \leq 12 \), we plot the line. **Vertices of the feasible region:** - \( (0, 0) \) - \( (0, 12) \) — \( y \)-intercept - \( (4, 0) \) — \( x \)-intercept **Evaluating the objective function at the vertices:** - \( F(0, 0) = 0 + 5(0) = 0 \) - \( F(0, 12) = 0 + 5(12) = 60 \) - \( F(4, 0) = 4 + 5(0) = 4 \) **Minimum value:** \( F(4, 0) = 4 \) --- ### 3. Problem c) Minimize \( F(x, y) = 20.25 - y \) under the constraints: - \( x \geq 0 \) - \( y \geq 0 \) - \( x \leq 3 \) - \( -5x + 3y \leq 15 \) **Constraints Interpretation:** 1. \( x \geq 0 \) 2. \( y \geq 0 \) 3. From \( x \leq 3 \) and rearranging \( -5x + 3y \leq 15 \) gives \( 3y \geq 5x - 15 \). **Vertices of the feasible region:** - Intersect the lines to find the vertices: 1. Intersection of \( x = 3 \) and \( 0 = 15 - 5(3) + 3y \) gives \( (3, 0) \) 2. Intersection when \( y = 0 \) gives \( x = 3 \) (on the boundary) 3. Check at \( (0, 0) \) **Evaluating the objective function at the vertices:** - \( F(0, 0) = 20.25 - 0 = 20.25 \) - \( F(3, 0) = 20.25 - 0 = 20.25 \) The line \( -5x + 3y = 15 \) allows us to find boundaries within the region constrained. The actual maximum value will be dependent on the coordinates where \( y \) intervention happens. --- Feel free to adjust or ask for elaboration on any specific parts!