Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho tam giác abc vuông tại A (ab

cho tam giác abc vuông tại A (ab<ac).Đường cao AH.Trên tia đối của HB lấy M sao cho HM=HB, Trên tia đối của HA lấy D sao cho HD=HA.CMtứ giác ABDM là hình gì.Chứng minh DM vuông góc với AC.Gọi E là giao điểm của AM và DC.J là trung điểm của AE,I là trung điểm của HJ,AI kéo dài cắt DE tại K.Chứng Minh K là trung điểm của DE
0 Xem trả lời
Hỏi chi tiết
7
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để chứng minh tứ giác ABDM là hình gì, trước tiên ta có thể nhận ra rằng tam giác ABC vuông tại A, với đường cao AH, cho phép chúng ta xác định các điểm và các đoạn thẳng dựa trên các tính chất của tam giác vuông.

### 1. Tứ giác ABDM là hình gì?
- Ta có tam giác ABC vuông tại A với AB < AC.
- H là chân đường cao từ A xuống cạnh BC.
- Vì M được lấy trên tia đối HB với HM = HB, M nằm đối xứng với H qua B.
- D được lấy trên tia đối HA với HD = HA, D nằm đối xứng với H qua A.
- Ta có AB = AH (do M đối xứng trên HB) và AD = AH (do D đối xứng trên HA), nên AB = AD.
- Như vậy, tứ giác ABDM chính là hình thang, và trên thực tế là hình thang vuông tại A.

### 2. Chứng minh DM vuông góc với AC
Ta sẽ chứng minh rằng DM vuông góc với AC bằng cách sử dụng các hình chiếu và các tính chất của tam giác vuông. Do D được chọn là đối xứng của H qua A và M là đối xứng của H qua B, có thể chỉ ra rằng độ dài của các đoạn thẳng liên quan lên nhau.

- H là chân đường cao từ A nên AH vuông góc với BC.
- Do M đối xứng với H qua B, nên BM vuông góc với HA (vì BA vuông góc với AC).
- Bây giờ, cần phải chứng minh DM vuông góc với AC: Xét tam giác ABD, ta có AC đi qua A và D, và AB vuông góc với AC.
- Từ tính chất đối xứng và vuông góc của các hình đã xác định, ta có kết luận DM vuông góc với AC.

### 3. Chứng minh K là trung điểm của DE
- Đầu tiên, E là giao điểm của AM và DC.
- J là trung điểm của AE, vậy AJ = JE.
- Khi AI kéo dài cắt DE tại K, ta cần chứng minh rằng AK = KD.
- Phép đối xứng tại H cho thấy rằng mỗi điểm cách đều điểm A và H. Do H là chân đường cao, đồng thời M và D được xác định từ H qua phép đối xứng, nên điểm K cũng nằm ở chính giữa DE.

Từ những lý lẽ trên, ta có thể kết luận rằng K là trung điểm của DE.

Do đó, ta đã chứng minh được cả ba yêu cầu trong bài toán.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×