Bài tập  /  Bài đang cần trả lời

Cho hình vuông ABCD có cạnh bằng a, trên tia đối của tia CD lấy E sao cho CE = a. Gọi N là trung điểm của BE, từ B vẽ BH vuông góc với DN (H thuộc DN). Chứng minh góc AHC = 90

Cho hình vuông ABCD có cạnh bằng a, trên tia đối của tia CD lấy E sao cho CE=a. Gọi N là trung điểm của BE, từ B vẽ BH vuông góc với DN ( H thuộc DN ).
a) Chứng minh góc AHC=90°.
b) Gọi M là trung điểm của AB. Chứng minh △DMN vuông cân.
c) Tính HA^4+HB^4+HC^4+HD^4 theo a.
1 Xem trả lời
Hỏi chi tiết
1.404
1
10
Anh Đỗ
17/11/2019 20:15:41
a) Xét ΔMNF,ΔMPEΔMNF,ΔMPE có :
MN=MPMN=MP (ΔMNPΔMNP cân tại M)
Mˆ:ChungM^:Chung
ME=MF(gt)ME=MF(gt)
=> ΔMNF=ΔMPE(c.g.c)ΔMNF=ΔMPE(c.g.c)
b) Ta có : {MN=MP(ΔMNP cân tại M))ME=MF(gt){MN=MP(ΔMNP cân tại M))ME=MF(gt)
Lại có : {E∈MNF∈MP(gt)⇒{MN=ME+NEMP=MF+FP{E∈MNF∈MP(gt)⇒{MN=ME+NEMP=MF+FP
Nên : MN−ME=MP−MFMN−ME=MP−MF
⇔NE=PF⇔NE=PF
Xét ΔNSE,ΔPSFΔNSE,ΔPSF có :
ESNˆ=FSPˆESN^=FSP^ (đối đỉnh)
NE=FPNE=FP (cmt)
SNEˆ=SPFˆSNE^=SPF^ (suy ra từ ΔMNF=ΔMPEΔMNF=ΔMPE)
=> ΔNSE=ΔPSF(g.c.g)ΔNSE=ΔPSF(g.c.g)
c) Xét ΔMEFΔMEF có :
ME=MF(gt)ME=MF(gt)
=> ΔMEFΔMEF cân tại M
Ta có : MEFˆ=MFEˆ=180O−Mˆ2(1)MEF^=MFE^=180O−M^2(1)
Xét ΔMNPΔMNP cân tại M có :
MNPˆ=MPNˆ=180o−Mˆ2(2)MNP^=MPN^=180o−M^2(2)
Từ (1) và (2) => MEFˆ=MNPˆ(=180O−Mˆ2)MEF^=MNP^(=180O−M^2)
Mà thấy : 2 góc này ở vị trí đồng vị
=> EF//NP(đpcm)EF//NP(đpcm)
d) Xét ΔMKN,ΔMKPΔMKN,ΔMKP có :
MN=MPMN=MP (ΔMNPΔMNP cân tại M)
MK : Chung
NK=PKNK=PK (K là trung điểm của NP )
=> ΔMKN=ΔMKP(c.c.c)ΔMKN=ΔMKP(c.c.c)
=> NMKˆ=PMKˆNMK^=PMK^ (2 góc tương ứng)
=> MK là tia phân giác của NMPˆNMP^ (3)
Xét ΔMSN,ΔMSPΔMSN,ΔMSP có :
MN=MPMN=MP (ΔMNPΔMNP cân tại M)
MNSˆ=MPSˆMNS^=MPS^ ( do ΔMNF=ΔMPEΔMNF=ΔMPE)
MS:ChungMS:Chung
=> ΔMSN=ΔMSP(c.g.c)ΔMSN=ΔMSP(c.g.c)
=> NMSˆ=PMSˆNMS^=PMS^ (2 góc tương ứng)
=> MS là tia phân giác của NMPˆNMP^ (4)
Từ (3) và (4) => M , S, K thẳng hàng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×