Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC nội tiếp (O)

Cho tam giác ABC nội tiếp (O) có B, C cố định, A chuyển động. Hai tiếp tuyến tại B, C của (O) cắt nhau tại điểm P. Đường tròn đường kính OP cắt AB, AC lần lượt tại D, E. DE cắt PB, PC lần lượt tại Q, R.

a) Chứng minh rằng OA vuông góc với DE.

b) Chứng minh rằng đường tròn ngoại tiếp tam giác PQR luông tiếp xúc với một đường tròn cố định.

4 Xem trả lời
Hỏi chi tiết
325
1
0
Hà nguyễn
05/04/2020 15:33:19

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
0
Hà nguyễn
05/04/2020 15:34:18
1
0
Hà nguyễn
05/04/2020 15:36:35

a) Ta có O là tâm ngoại tiếp \(\Delta\)ABC nên ^OAC = 900 - ^ABC hay ^OAC + ^ABC = 900

Đường tròn đường kính OP cắt AB,AC tại D,E => ^ABC = ^AED. Do đó ^OAC + ^AED = 900

Suy ra OA vuông góc với DE (đpcm).

1
0
Hà nguyễn
05/04/2020 15:37:35

b) Bổ đề (Quan sát hình bên phải) Xét tam giác ABC nội tiếp đường tròn. Một đường tròn (R) tiếp xúc với hai cạnh AB,AC đồng thời tiếp xúc trong với đường tròn (ABC) lần lượt tại M,N,P. Khi đó MN đi qua tâm nội tiếp của tam giác ABC.

Thật vậy: Gọi I là tâm nội tiếp \(\Delta\)ABC. Ta thấy R vừa tiếp xúc dây AC tại N, vừa tiếp xúc trong với (ABC) tại P

Từ đó dễ suy ra PN đi qua điểm chính giữa (AC. Tương tự PM đi qua điểm chính giữa (AB

Gọi PM,PN cắt (ABC) lần lượt tại F,E thì CF cắt BE tại I (Vì I là tâm nội tiếp \(\Delta\)ABC)

Áp dụng ĐL Pascal cho bộ 6 điểm F,A,E,B,P,C ta thu được M,I,N thẳng hàng.

Quay trở lại bài toán: Gọi T là trung điểm OP. Hạ TH,TM,TN lần lượt vuông góc với DE,PB,PC

Có ^PEC = ^PBC = ^CAB => PE // AD. Tương tự PD // AE, suy ra tứ giác ADPE là hình bình hành

Dễ thấy T là tâm của (OP) và ^ETD = 2^EPD = 2^BAC = Sđ(BC(O) = const

Mà TD = TE = OP/2 = const nên độ dài đường cao của \(\Delta\)DTE không đổi hay TH =  const

\(\Delta\)HTE = \(\Delta\)MTP = \(\Delta\)NTP (Ch.gn) => TH = TM = TN. Do vậy T cố định và là tâm nội tiếp \(\Delta\)PQR

Nếu ta gọi (S) là đường tròn tiếp xúc với PQ,PR lần lượt tại K,L và tiếp xúc trong với (PQR)

Thì lúc này K,T,L thẳng hàng (Bổ đề). Theo tính chất 2 tiếp tuyến giao nhau thì PK = PL

=> \(\Delta\)KPL cân tại P và nhận PT làm đường cao. Ta thấy P,T,N đều cố định (cmt) nên PT,PN không đổi

Áp dụng hệ thức lượng trong tam giác vuông có PT^2 = PN.PL => PL = const

Ta lại có PL^2 = PT.PS, từ đây có PS = const. Mà S nằm trên tia PT cố định nên S cố định

Đồng thời SL^2 = SK^2= PS^2- PL^2= const. Suy ra đường tròn (S) cố định

Vậy thì đường tròn ngoại tiếp \(\Delta\)PQR luôn tiếp xúc với đường tròn (S) cố định (đpcm).

*) Nhận xét: Đường tròn (R) được nêu trong bổ đề chính là đường tròn Mixtilinear của tam giác ABC.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×