Cho hình bình hành ABCD. Gọi I, K theo thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AE, CK theo thứ tự tại E, F.
a) CMR: DE=EF=FB
b) Gọi M là trung điểm AD, N trung điểm BC. Chứng minh: tứ giác KMIN là hình bình hành
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: AB = CD ( tính chất hình bình hành)
AK =12=12AB (gt)
CI =12=12CD (gt)
Suy ra: AK = CI (1)
Mặt khác: AB // CD (gt)
⇒ AK // CI (2)
Từ (1) và (2) suy ra tứ giác AKCI là hình bình hành ( vì có một cặp cạnh đối song song và bằng nhau)
⇒ AI // CK
Trong ∆ ABE ta có:
K là trung điểm của AB (gt)
AI // CK hay KF // AE nên BF // EF ( tính chất đường trung bình tam giác)
Trong ∆ DCF ta có:
I là trung điểm của DC (gt)
AI // CK hay IE // CF nên DE = EF (tính chất đường trung bình tam giác)
Suy ra: DE = EF = FB
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |