Bài tập  /  Bài đang cần trả lời

Tìm giá trị lớn nhất M và nhỏ nhất m của hàm số y = sin^2 x + 2cos^2 x

Tìm giá trị lớn nhất M và nhỏ nhất m của hàm số y = sin^2 x + 2cos^2 x

4 Xem trả lời
Hỏi chi tiết
23.208
4
11
Vũ Phan Bảo Hân
05/11/2020 23:23:35
+5đ tặng

Để tìm được giá trị lớn nhất;giá trị nhỏ nhất của hàm số ta cần chú ý:

+ Với mọi x ta luôn có: - 1 ≤ cosx ≤ 1; -1 ≤ sinx ≤ 1

+Với mọi x ta có: 0 ≤ |cosx| ≤ 1 ;0 ≤ |sinx| ≤ 1

+ Bất đẳng thức bunhia –copski: Cho hai bộ số (a1; a2) và (b1;b2) khi đó ta có:

(a1.b1+ a2.b2 )2 ≤ ( a12+ a22 ).( b12+ b22 )

Dấu “=” xảy ra khi: a1/a2 = b1/b2

+ Giả sử hàm số y= f(x) có giá trị lớn nhất là M và giá trị nhỏ nhất là m. Khi đó; tập giá trị của hàm số là [m; M].

+ Phương trình : a. sinx+ b. cosx= c có nghiệm khi và chỉ khi a2 + b2 ≥ c2

B. Ví dụ minh họa

Ví dụ 1. Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= 1- 2|cos3x|.

A. M=3 ; m= - 1.

B. M= 1 ; m= -1.

C. M=2 ;m= -2.

D. M=0 ; m= -2.

Lời giải:.

Chọn B.

Với mọi x ta có : - 1 ≤ cos3x ≤ 1 nên 0 ≤ |cos3x| ≤ 1

⇒ 0 ≥ -2|cos3x| ≥ -2

 

Ví dụ 2: Hàm số y= 1+ 2cos2x đạt giá trị nhỏ nhất tại x= x0. Mệnh đề nào sau đây là đúng?

A.x0=π+k2π, kϵZ .

B.x0=π/2+kπ, kϵZ .

C.x0=k2π, kϵZ .

D.x0=kπ ,kϵZ .

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
7
3
Lê Thái Bảo
05/11/2020 23:23:48
+4đ tặng
ta có sin^2x+2cos^2x
=1+cos^2x
vì cos^2x thuộc đoạn 0 đến 1
=>1+cos^2x thuộc đoạn 1 đến 2
=> gtnn là 1
ln là 2
8
6
7
2
Ta Thi Khanh Hien
05/11/2020 23:36:03
+2đ tặng

Ta có: y = sin2 x+ 2cos2x = (sin2x+ cos2x) + cos2x = 1+ cos2 x.

Do: -1 ≤ cosx ≤ 1 nên 0 ≤ cos2 x ≤ 1 ⇒ 1 ≤ cos2 x+1 ≤ 2

Suy ra giá trị lớn nhất của hàm số là M= 2 và giá trị nhỏ nhất của hàm số là m= 1

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×