Tìm giá trị lớn nhất M và nhỏ nhất m của hàm số y = sin^2 x + 2cos^2 x
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Để tìm được giá trị lớn nhất;giá trị nhỏ nhất của hàm số ta cần chú ý:
+ Với mọi x ta luôn có: - 1 ≤ cosx ≤ 1; -1 ≤ sinx ≤ 1
+Với mọi x ta có: 0 ≤ |cosx| ≤ 1 ;0 ≤ |sinx| ≤ 1
+ Bất đẳng thức bunhia –copski: Cho hai bộ số (a1; a2) và (b1;b2) khi đó ta có:
(a1.b1+ a2.b2 )2 ≤ ( a12+ a22 ).( b12+ b22 )
Dấu “=” xảy ra khi: a1/a2 = b1/b2
+ Giả sử hàm số y= f(x) có giá trị lớn nhất là M và giá trị nhỏ nhất là m. Khi đó; tập giá trị của hàm số là [m; M].
+ Phương trình : a. sinx+ b. cosx= c có nghiệm khi và chỉ khi a2 + b2 ≥ c2
B. Ví dụ minh họaVí dụ 1. Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= 1- 2|cos3x|.
A. M=3 ; m= - 1.
B. M= 1 ; m= -1.
C. M=2 ;m= -2.
D. M=0 ; m= -2.
Lời giải:.
Chọn B.
Với mọi x ta có : - 1 ≤ cos3x ≤ 1 nên 0 ≤ |cos3x| ≤ 1
⇒ 0 ≥ -2|cos3x| ≥ -2
Ví dụ 2: Hàm số y= 1+ 2cos2x đạt giá trị nhỏ nhất tại x= x0. Mệnh đề nào sau đây là đúng?
A.x0=π+k2π, kϵZ .
B.x0=π/2+kπ, kϵZ .
C.x0=k2π, kϵZ .
D.x0=kπ ,kϵZ .
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |