Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC nhọn có 3 đường cao là AD, BK, CH, O là trực tâm

cho tam giác ABC nhọn  có 3 đường cao là AD, BK, CH , O LÀ TRỰC TÂM
SO SÁNH tanA và BC/căn AB.AC
 

1 Xem trả lời
Hỏi chi tiết
274
0
0
...
29/11/2020 20:52:16
+5đ tặng

a) Tứ giác AMKO nội tiếp đường tròn.

Ta có : ˆAMO=90oAMO^=90o (Do AM là tiếp tuyến của đường tròn tâm O tại M)

Ta có ˆAMO=ˆAKO=900AMO^=AKO^=900 (gt) ⇒⇒ Tứ giác AMKO có hai đỉnh M, K kề nhau cùng nhìn cạnh AO dưới 1 góc 900

⇒⇒ Tứ giác AMKO là tứ giác nội tiếp (Tứ giác có hai đỉnh kề nhau cùng nhìn 1 cạnh dưới các góc bằng nhau).

b) KA là tia phân giác của góc MKN.

Ta có : ˆANO=90oANO^=90o (Do AN là tiếp tuyến của đường tròn tâm O tại N)

Xét tứ giác ANOK có ˆANO+ˆAKO=900+900=1800⇒ANO^+AKO^=900+900=1800⇒ Tứ giác ANOK là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800)

Tứ giác AMKO nội tiếp ⇒ˆAKM=ˆAOM⇒AKM^=AOM^ (hai góc nội tiếp cùng chắn cung AM)

Tứ giác ANOK nội tiếp ⇒ˆAKN=ˆAON⇒AKN^=AON^ (hai góc nội tiếp cùng chắn cung AN)

Mà ˆAOM=ˆAONAOM^=AON^ (tính chất hai tiếp tuyến AM và AN cắt nhau tại A).

⇒ˆAKM=ˆAKN⇒KA⇒AKM^=AKN^⇒KA là phân giác của góc MKN.

c) AN2=AK.AHAN2=AK.AH

Ta có AM=ANAM=AN (tính chất hai tiếp tuyến cắt nhau) ⇒A⇒A thuộc trung trực của MN.

OM=ON(=R)⇒OOM=ON(=R)⇒O thuộc trung trực của MN.

⇒OA⇒OA là trung trực của MN ⇒OA⊥MN⇒OA⊥MN.

⇒ˆAMN=ˆAOM⇒AMN^=AOM^ (cùng phụ với góc OAM).

Mà ˆAKM=ˆAOM(cmt)⇒ˆAKM=ˆAMN=ˆAMHAKM^=AOM^(cmt)⇒AKM^=AMN^=AMH^

Xét tam giác AMH và tam giác AKM có :

ˆMAKMAK^ chung ;

ˆAKM=ˆAMH(cmt)AKM^=AMH^(cmt) ;

⇒ΔAMH∽ΔAKM(g.g)⇒AMAH=AKAM⇒AM2=AH.AK⇒ΔAMH∽ΔAKM(g.g)⇒AMAH=AKAM⇒AM2=AH.AK

Mà AM=AN(cmt)⇒AN2=AH.AKAM=AN(cmt)⇒AN2=AH.AK

d) H là trực tâm tam giác ABC.

Gọi DD là giao điểm của ACAC và (O).(O).

Xét  ΔADNΔADN và ΔACNΔACN ta có :

∠CANchung∠CANchung

∠DNA=∠DCN∠DNA=∠DCN (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung DNDN)

⇒ΔADN∼ΔACN(g−g)⇒AD.AC=AN2⇒AD.AC=AH.AK(theocmb)⇒AHAC=ADAK⇒ΔADN∼ΔACN(g−g)⇒AD.AC=AN2⇒AD.AC=AH.AK(theocmb)⇒AHAC=ADAK

Xét ΔAHDΔAHD và ΔACKΔACK ta có :

∠KACchungAHAC=ADAK(cmt)⇒ΔAHD∼ΔACK(c−g−c)⇒∠AKC=∠ADH=900.⇒HD⊥DC∠KACchungAHAC=ADAK(cmt)⇒ΔAHD∼ΔACK(c−g−c)⇒∠AKC=∠ADH=900.⇒HD⊥DC

Lại có DB⊥DC⇒B,H,DDB⊥DC⇒B,H,D thẳng hàng.

Hay BH⊥AC.BH⊥AC.

Xét ΔABCΔABC ta có BD,AHBD,AH là hai đường cao của tam giác mà BD∩AH={H}⇒HBD∩AH={H}⇒H là trực tâm của ΔABC(dpcm)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×