Bài tập  /  Bài đang cần trả lời

Chứng minh rằng C O D thẳng hàng

1 Xem trả lời
Hỏi chi tiết
272
1
0
Nguyễn Thành Trương
05/01/2021 20:54:57
+5đ tặng

a)
+) Xét tam giác OAD có: OA = OD (= bán kính đường tròn)

Suy ra tam giác OAD cân tại O.

Suy ra: ∠A = ∠D ( tính chất tam giác cân). (1)

+) Xét tam giác OBC có: OB = OC (= bán kính đường tròn)

Suy ra tam giác OBC cân tại O.

Suy ra: ∠B = ∠C ( tính chất tam giác cân). (2)

+) Lại có: ∠A = ∠B ( giả thiết) (3)

Từ (1); (2) và (3) suy ra: ∠A = ∠B = ∠C = ∠D

Vậy hai tam giác cân OAD và OBC có góc ở đáy bằng nhau nên góc ở đỉnh bằng nhau: ∠AOD = ∠BOC (4).

+) Ta có: ∠AOD + ∠DOB = 180º ( hai góc kề bù) (5)

Từ (4) và (5) suy ra: ∠BOC + ∠DOB = 180º hay 3 điểm C, O và D thẳng hàng.
b)

Xét tam giác OAD và ∆ OCB có:

OA = OC ( = bán kính đường tròn)

∠AOD = ∠BOC ( hai góc đối đỉnh)

OD = OB ( = bán kính đường tròn)

Suy ra:∆ OAD = ∆ OCB ( c.g.c)

Suy ra: AD = BC ( hai cạnh tương ứng).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×