Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a)
+) Xét tam giác OAD có: OA = OD (= bán kính đường tròn)
Suy ra tam giác OAD cân tại O.
Suy ra: ∠A = ∠D ( tính chất tam giác cân). (1)
+) Xét tam giác OBC có: OB = OC (= bán kính đường tròn)
Suy ra tam giác OBC cân tại O.
Suy ra: ∠B = ∠C ( tính chất tam giác cân). (2)
+) Lại có: ∠A = ∠B ( giả thiết) (3)
Từ (1); (2) và (3) suy ra: ∠A = ∠B = ∠C = ∠D
Vậy hai tam giác cân OAD và OBC có góc ở đáy bằng nhau nên góc ở đỉnh bằng nhau: ∠AOD = ∠BOC (4).
+) Ta có: ∠AOD + ∠DOB = 180º ( hai góc kề bù) (5)
Từ (4) và (5) suy ra: ∠BOC + ∠DOB = 180º hay 3 điểm C, O và D thẳng hàng.
b)
Xét tam giác OAD và ∆ OCB có:
OA = OC ( = bán kính đường tròn)
∠AOD = ∠BOC ( hai góc đối đỉnh)
OD = OB ( = bán kính đường tròn)
Suy ra:∆ OAD = ∆ OCB ( c.g.c)
Suy ra: AD = BC ( hai cạnh tương ứng).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |