Bài tập  /  Bài đang cần trả lời

Bài 7 trang 75 sgk đại số và giải tích 11

1 Xem trả lời
Hỏi chi tiết
569
0
0
Phạm Văn Phú
12/12/2017 02:36:44
Bài 7. Có hai hộp chứa các quả cầu. Hộp thứ nhất chứa \(6\) quả trắng, \(4\) quả đen. Hộp thứ hai chứa \(4\) quả trắng, \(6\) quả đen. Từ mỗi hộp lấy ngẫu nhiên một quả. Kí hiệu:
\(A\) là biến cố: "Quả lấy từ hộp thứ nhất trắng";
\(B\) là biến cố: "Quả lấy từ hộp thứ hai trắng".
a) Xét xem \(A\) và \(B\) có độc lập không.
b) Tính xác suất sao cho hai quả cầu lấy ra cùng màu.
c) Tính xác suất sao cho hai quả cầu lấy ra khác màu.
Bài giải:
Phép thử \(T\) được xét là: "Từ mỗi hộp lấy ngẫu nhiên một quả cầu".
Mỗi một kết quả có thể có của phép thử \(T\) gồm hai thành phần là: \(1\) quả cầu của hộp thứ nhất và \(1\) quả cầu của hộp thứ \(2\).
Có \(10\) cách để lấy ra \(1\) quả cầu ở hộp thứ nhất và có \(10\) cách để lấy \(1\) quả cầu ở hộp thứ \(2\). Từ đó, vận dụng quy tắc nhân ta tìm được số các cách để lập được một kết quả có thể có của hai phép thử \(T\) là \(10 . 10 = 100\). Suy ra số các kết quả có thể có của phép thử \(T\) là \(n(Ω) = 100\).
Vì lấy ngẫu nhiên nên các kết quả có thể có của phép thử \(T\) là đồng khả năng.
Xét biến cố \(A\): "Quả cầu lấy từ hộp thứ nhất có màu trắng".
Mỗi một kết quả có thể có thuận lợi cho \(A\) gồm \(2\) thành phần là: \(1\) quả cầu trắng ở hộp thứ nhất và \(1\) quả cầu (nào đó) ở hộp thứ \(2\). Vận dụng quy tắc nhân ta tìm được số các kết quả có thể có thuận lợi cho \(A\) là: \(n(A) = 6 . 10 = 60\).
Suy ra \(P(A) \)= \(\frac{60}{100}\) = \(0,6\).
Xét biến cố \(B\): "Quả cầu lấy từ hộp thứ hai có màu trắng".
Tương tự như trên ta tìm được số các kết quả có thể thuận lợi cho \(B\) là:
\(n(B) = 10 . 4 = 40\).
Từ đó suy ra \(P(B)\) = \(\frac{40}{100}\) = \(0,4\).
a) Ta có \(A . B\) là biến cố: "Lấy được \(1\) cầu trắng ở hộp thứ nhất và \(1\) cầu trắng ở hộp thứ hai". Vận dụng quy tắc nhân ta tìm được số các kết quả có thể có thuận lợi cho \(A . B\) là:
\(6 . 4 =24\). Suy ra:
\(P(A . B)\) = \(\frac{24}{100}\) = \(0,24 = 0,6 . 0,4 = P(A) . P(B)\).
Như vậy, ta có \(P(A . B) = P(A) . P(B)\). Suy ra \(A\) và \(B\) là hai biến cố độc lập với nhau.
b) Gọi \(C\) là biến cố: "Lấy được hai quả cầu cùng màu". Ta có
\(C = A . B\) + \(\overline{A}\) . \(\overline{B}\).
Trong đó \(\overline{A}\) = "Quả cầu lấy từ hộp thứ nhất có màu đen" và \(P\)(\(\overline{A}\)) = \(0,4\).
\(\overline{B}\): "Quả cầu lấy từ hộp thứ hai có màu đen" và P(\(\overline{B}\)) = \(0,6\).
Và ta có \(A . B\) và \(\overline{A}\) . \(\overline{B}\) là hai biến cố xung khắc với nhau.
\(A\) và \(B\) độc lập với nhau, nên \(\overline{A}\) và \(\overline{B}\) cũng độc lập với nhau.
Qua trên suy ra;
\(P(C)\) = \(P\)(\(A . B\) + \(\overline{A}\) . \(\overline{B}\)) = \(P(A . B)\) + \(P\)( \(\overline{A}\) . \(\overline{B}\)) = \(P(A) . P(B)\) + \(P\)(\(\overline{A}\)) . \(P\)(\(\overline{B}\))
= \(0,6 . 0,4 + 0,4 . 0,6 = 0,48\).
c) Gọi \(D\) là biến cố: "Lấy được hai quả cầu khác màu". Ta có
\(D\) = \(\overline{C}\) \(=> P(D) = 1 - P(C) = 1 - 0,48 = 0,52\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×