Bài tập  /  Bài đang cần trả lời

Bài 6 trang 156 sách giáo khoa Đại số và Giải tích 11

1 Xem trả lời
Hỏi chi tiết
669
0
0
Tôi yêu Việt Nam
12/12/2017 01:56:04
Bài 6. Viết phương trình tiếp tuyến của đường hypebol \(y =  \frac{1}{x}\):
a) Tại điểm \((  \frac{1}{2} ; 2)\)
b) Tại điểm có hoành độ bằng \(-1\);
c) Biết rằng hệ số góc của tiếp tuyến bằng -\( \frac{1}{4}\).
Giải:
Bằng định nghĩa ta tính được \(y' = - \frac{1}{x^{2}}\).
a) \(y'  \left ( \frac{1}{2} \right )= -4\). Do đó hệ số góc của tiếp tuyến bằng \(-4\). Vậy phương trình tiếp tuyến của hypebol tại điểm \((  \frac{1}{2} ; 2)\) là \(y - 2 = -4(x -  \frac{1}{2})\) hay \(y = -4x + 4\).
b) \(y' (-1) = -1\). Do đó hệ số góc của tiếp tuyến bằng \(-1\). Ngoài ra, ta có \(y(-1) = -1\). Vậy phương trình tiếp tuyến tại điểm có tọa độ là \(-1\) là \(y - (-1) = -[x - (-1)]\) hay \(y = -x - 2\).
c) Gọi \(x_0\) là hoành độ tiếp điểm. Ta có
\(y' (x_0) = -  \frac{1}{4} \Leftrightarrow -  \frac{1}{x_{0}^{2}} = -  \frac{1}{4}\)\(\Leftrightarrow x_{0}^{2} = 4 \Leftrightarrow x_{0}=  ±2\).
Với \(x_{0}= 2\) ta có \(y(2) =  \frac{1}{2}\), phương trình tiếp tuyến là
     \(y -  \frac{1}{2} = - \frac{1}{4}(x - 2)\) hay \(y =  \frac{1}{4}x + 1\).
Với \(x_{0} = -2\) ta có \(y (-2) = - \frac{1}{2}\), phương trình tiếp tuyến là
    \(y -  \left ( -\frac{1}{2} \right ) = - \frac{1}{4}[x - (-2)]\) hay \(y = -  \frac{1}{4}x -1\)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×